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Abstract: Photoacoustic (PA) imaging combines optical excitation with ultrasonic detection to achieve
high-resolution imaging of biological samples. A high-energy pulsed laser is often used for imaging
at multi-centimeter depths in tissue. These lasers typically have a low pulse repetition rate, so to
acquire images in real-time, only one pulse of the laser can be used per image. This single pulse
necessitates the use of many individual detectors and receive electronics to adequately record the
resulting acoustic waves and form an image. Such requirements make many PA imaging systems
both costly and complex. This investigation proposes and models a method of volumetric PA
imaging using a state-of-the-art compressed sensing approach to achieve real-time acquisition of the
initial pressure distribution (IPD) at a reduced level of cost and complexity. In particular, a single
exposure of an optical image sensor is used to capture an entire Fabry–Pérot interferometric acoustic
sensor. Time resolved encoding as achieved through spatial sweeping with a galvanometer. This
optical system further makes use of a random binary mask to set a predetermined subset of pixels
to zero, thus enabling recovery of the time-resolved signals. The Two-Step Iterative Shrinking and
Thresholding algorithm is used to reconstruct the IPD, harnessing the sparsity naturally occurring in
the IPD as well as the additional structure provided by the binary mask. We conduct experiments on
simulated data and analyze the performance of our new approach.

Keywords: photoacoustic imaging; compressed sensing; inverse problems; compressed ultrafast
photography

1. Introduction

Photoacoustic (PA) imaging provides a method of in vivo non-invasive and high-
resolution molecular imaging at centimeter depth scales [1–4]. In PA imaging, biological
tissue is irradiated by a pulsed laser. The absorption of the laser by endogenous or
exogenous chromophores induces a local increase in temperature, which in turn causes a
pressure rise through thermoelastic expansion of the tissue. Ultrasound receivers placed at
the surface of the tissue detect the resulting acoustic waves. Images of the optical absorption
can be reconstructed by solving acoustic and optical inverse problems [5]. While high-
speed data acquisition is possible with PA imaging, the multichannel data acquisition
systems that are available to record this data are expensive [6]. The detection of PA
signals is most commonly accomplished using digital-to-analog converters recording the
voltage connected to piezoelectric transducers, which drastically increase the complexity
of the imaging system [7]. A well-established alternative to this is a method for optical
interferometric detection which utilizes a Fabry–Pérot etalon (FPE) [8–10]. The FPE exploits
the resonant interference of an interrogating continuous wave laser between two reflecting
surfaces to provide both sensitive detection and large acoustic bandwidth.

A major limitation to using a FPE for PA signal detection, however, is that detection
is performed only at a single point on the etalon. In practice, the detection laser must be
raster scanned along the surface of the etalon to acquire a volumetric image of the tissue.
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Thus, the PA signal generating laser must be shot for each position in the raster scan to
produce the photoacoustic signal, making the temporal resolution highly dependent on
the pulse repetition rate of the laser. This dependence makes the imaging system prone to
motion artifacts and unable to capture fast dynamic processes.

In order to improve the temporal resolution of the imaging system, recent work has
been done in which a FPE was imaged onto a scrambled Hadamard pattern over multiple
sequential measurements [11,12]. Though the main features of imaging phantoms used
were successfully recovered at compression rates as low as 10%, multiple acquisitions of
data were necessary, and thus the total data acquisition time was still much longer than
pulse repetition rate of the laser.

Here, FPE-based PA image detection is combined with compressed ultrafast photog-
raphy to further improve the temporal resolution. Compressed ultrafast photography
applies core compressed sensing principles to acquire a sequence of images at a high rate
using a single exposure of a camera [13]. In the original work, a random binary mask is
applied to the image, and a streak camera is then used to scan the image quickly across a
sensor [14]. The mask in conjunction with the streak camera provide enough structure such
that the original time-resolved image sequence can be reconstructed. This has enabled re-
construction of 980-frame videos with framerates achieving 7× 1013 frames per second [15].
In applications that do not require such extreme framerates, the streak camera can be
replaced with a low-cost galvanometer to achieve the spatial shifting of the image [16].

In this work, we design and simulate an optical system that is capable of acquiring
the interference pattern of the entire FPE with a sampling rate of greater than 12 MHz.
This optical system utilizes a digital micromirror device to apply a binary mask to the
interference pattern of the FPE. The resulting masked image is then rapidly swept across
an imaging sensor with a galvanometer, thus encoding time information in the spatial
domain. Finally, the PA image is reconstructed using a compressive sensing approach that
iteratively solves a convex optimization problem specifically designed for problems where
data are under-sampled and the true solution has sparse representation in some related
domain (e.g., the gradient domain).

The rest of this paper is organized as follows: In Section 2, we describe the problem
and provide the background in compressed sensing needed in our new approach. The
results of the simulations are presented in Section 3, with a discussion of these findings
and some concluding remarks in Section 4.

2. Methods
2.1. Optical Setup

The proposed optical system is depicted in Figure 1. A pulsed laser is applied to the
tissue of interest. Optical absorbers in the tissue then convert the optical energy to heat,
inducing a thermoelastic expansion of the surrounding tissue. The expansion generates
broadband ultrasound waves, which are detected at the surface of the tissue with a FPE.
This interaction of the PA waves with the surface of the FPE results in modulation of the
reflected interrogating continuous-wave (CW) laser beam on the opposite side of the FPE.
The linear polarizer and quarter wave plates allow for the directed flow of the light through
the polarized beam splitters.

The modulated CW laser beam is then imaged onto a digital micromirror device
(DMD) via a 4-f optical system, which consists of two lenses spaced by twice their focal
length. The DMD consists of a two-dimensional array of mirrors that will either reflect the
light along the optical path or deflect it away from it, resulting in a binary mask on the FPE.
A second 4-f optical system then images the DMD directly onto an imaging sensor array.
A galvanometer is placed in the Fourier plane of the second 4-f system, which rapidly
sweeps the image of the masked FPE across the camera during a single exposure.
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Figure 1. The proposed optical system. SMF = single-mode fiber, OI = optical isolator, COL =
collimator, PBS = polarized beam splitter, λ/4 = quarter wave plate, L = lens, CAM = camera, DMD
= digital micromirror device, LP = linear polarizer, FPE = Fabry–Pérot etalon.

2.2. Continuous Model

We now seek to build a forward model that transforms a given initial pressure distri-
bution (IPD) to a camera image based on the proposed optical system. Let d, τ ∈ R+. The
function P(x, y, z, t) is defined on [0, d]× [0, d]× [0, d]× [0, τ] to be the pressure distribu-
tion at (x, y, z) at time t. The IPD is then P0 := P(x, y, z, 0). Acoustic waves then propagate
outwards in a manner determined by the governing equations

∂~u
∂t

= − 1
ρ0
∇P

∂ρ

∂t
= −ρ0∇ · ~u

P = c2
0ρ.

Here ~u is the acoustic particle velocity, ρ is the density, ρ0 is the density in the absence of
acoustic waves, and c0 is the isentropic sound speed [17].

The FPE is placed on the xy-plane and encodes the pressure data P(x, y, 0, t). We next
define the binary mask M ⊂ R2. The interaction of the light from the FPE with the DMD
can be characterized as

PM(x, y, t) =

{
P(x, y, 0, t) if (x, y) ∈ M
0 else.

(1)

The data then undergoes a shearing operation from the motion of the galvanometer, leading
to

PS(x, y, t) = PM(x− αt, y, t), (2)

where it is assumed that the galvanometer sweeps with a constant speed α > 0, where α
is determined by the physical limitations of the galvanometer and the focal length of the
lenses in the second 4-f system.

Lastly, PS undergoes a temporal integration operation as it is swept across the camera
sensor for an exposure time equal to the acoustic wave propagation time τ, yielding the
camera image

E(x, y) =
∫ τ

0
PS(x, y, t)dt =

∫ τ

0
PM(x− αt, y, t)dt, (3)
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where PM(x, y, t) is given in (1). This describes the full continuous forward model.

2.3. Discrete Model

We now move to discretize (3) to enable solving the inverse problem. First, the IPD is
discretized into a uniform three-dimensional computational grid of size N × N × N for a
given choice of N ∈ Z. The dimension of each voxel is then h × h × h where h = d

N . The
grid elements are then rearranged to form a single vector u of length N3. Next, we model
the propagation of the acoustic waves through body tissue over time using the k-Wave
simulation toolbox in MATLAB [18]. The propagation is also temporally discretized with
time steps ∆t determined by the Courant–Friedrichs–Lewy condition, which is dependent
on c0 and h. The total number of time steps T ∈ Z is then calculated as T = b τ

∆t c.
The acoustic waves are observed by the FPE located at the base of the computational grid
at each time step. This transformation from the IPD to the sequence of T images of size
N × N detected by the FPE can be modeled by the N2T × N3 matrix K, which is construct
ed by simulating the FPE output for each of the standard basis vectors in RN3

.
The binary mask M used in (1) is now discretized to form M′, and is defined as

M′i,j =

{
1 if (ih, jh) ∈ M
0 else,

, i, j = 1, . . . , N. (4)

The diagonal matrix M ∈ RN2T×N2T is subsequently formed by reshaping M′ into an
N2 × 1 vector and inserting it into M such that Mj+iN2,j+iN2 = M′ j for j = 1, . . . , N2 and
i = 1, . . . , (T − 1).

The shearing operation is then applied, which we write as matrix S, where the se-
quence of images is shifted (spatially) along the x-axis as a function of time. Since the
shearing speed has, in practice, a significantly greater magnitude than ∆t, down-sampling
is also performed during this step. This is accomplished by calculating the downsize factor
s =

⌈
α

∆t
⌉
. For every s entries, all but one entry is discarded so that S is a matrix of size(⌊

T
s

⌋
+ N − 1

)
N
⌊

T
s

⌋
× N2T.

Lastly, the light intensity incident to each pixel is summed over time using a left
Riemann sum by the

(⌊
T
s

⌋
+ N − 1

)
N ×

(⌊
T
s

⌋
+ N − 1

)
N
⌊

T
s

⌋
matrix I, resulting in the

camera image v. Since I, S, M, and K are matrices, the full forward model can thus be
represented as

w = Av + e (5)

where A = ISMK, w is a vector of length NL, and e is a vector of additive white Gaussian
noise with mean zero and covariance matrix INLσ2. Although the matrices I, S, and K are
not analytically constructed, one can explicitly form A, as will be described in Section 2.5.
The parameter L is determined by the angular velocity of the galvanometer, and with a
constant angular velocity, we have from above that L =

⌊
T
s

⌋
+ N − 1. Figure 2 indicates

how each component of A affects the image.
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Figure 2. A pictorial representation of the imaging process as individual forward operations.

2.4. Image Reconstruction via Compressed Sensing

To reconstruct the IPD, we utilize ideas and algorithms from compressed sensing,
which is based on the key notion that a sparse signal can be reconstructed with relatively
few measurements. Following the seminal work in [19,20], many investigations have
centered around compressed sensing algorithms – sometimes with the goal of generally
improving the methodology, e.g., its efficiency, robustness, and accuracy, and in other cases
to use the method for a particular application of interest. For example, compressed sensing
has been extensively used in the area of PA image reconstruction, [21–24].

Compressed sensing requires that the image satisfy certain sparsity and incoherence
constraints [25]. They are (i) the image should contain only a few nonzero values in some
domain, known as the sparse domain, and (ii) the image acquisition domain should not be
coherent with the sparse domain. The original image can then be accurately reconstructed
from under-sampled data using an iterative method that utilizes a data fidelity term and
includes a sparsity constraint.

As we are attempting to reconstruct a vector of length N3 with one of length NL, where
L < N2, this inverse problem is under-determined. Note that in practice, L� N2, so the
compression ratio is quite high. In this work, we arrive at the L/N2 ratio of 163/4096 ≈ 25.
We will address this issue using a compressive sensing approach, which, as noted above,
requires that the IPD is sparse in some domain. Since it is anticipated that real-world
applications will consider IPDs that are approximately piecewise-constant, the sparsity
-enforcing regularization term Φ is chosen as the isotropic discrete total variation (TV)
operator. This leads us to the convex optimization problem

v = arg min
v̂≥0

1
2
‖Av̂− w‖2

2 + λΦ(v̂), (6)

where A is described in (5), λ is the regularization parameter, and the problem is augmented
by the physical constraint v ≥ 0.

Many algorithms have been developed to numerically solve (6), and there have also
been numerous investigations into parameter selection [26]. For the simulations we em-
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ploy the Two-Step Iterative Shrinkage/Thresholding (TwIST) algorithm to recover v in
(6) [27]. This method brings together the high denoising capabilities of iterative shrink-
age/thresholding (IST) and the efficiency for dealing with ill-posed problems of iterative
reweighted shrinkage (IRS) algorithms. IST has good denoising properties, while IRS is
good at handling ill-posed problems, and TwIST aims at keeping both these advantages.
Since the IPD is expected to be nonnegative, we have modified TwIST such that after each
iteration, all negative values are set to zero. This modification is not trivial, and further
investigation is needed to quantify the stability and accuracy of this revised method. The
unmodified TwIST algorithm is commonly used in related applications [12,28].

To compensate for the finite resolution effects and aliasing arising from discretization
of the k-Wave simulation, reconstructed IPD is normalized prior to quantitative compar-
ison. We acknowledge that this is not necessarily the best way to treat the error, but the
approach is effective in our experiments. More extensive study is required to identify
a better mitigating technique. The two main criteria used to quantify the success of the
reconstruction are mean square error (MSE) and multi-scale structural similarity (MS-SSIM)
index. The MS-SSIM index incorporates image details at different resolutions to provide
an image quality assessment based on the human visual system [29]. For MSE, a smaller
number indicates less error, while MS-SSIM is between −1 and 1, with 1 indicating a
perfect reconstruction.

2.5. Simulation Setup and Analysis

In addition to the parameters defined previously, there are several other important
parameters to discuss for the simulations. The size of the computational grid for the k-Wave
simulation is Nc > N, where we apply a perfectly matched layer absorbing boundary
condition to the edges of the computational grid. The layer occupies a strip of size NL grid
points around the outer perimeter of the computational domain. The speed of sound in the
medium containing the IPD is cs, the length of each voxel is h, and the center frequency
is f .

We now describe how the resulting image is computed from the optical setup given
an IPD. An N3

c computational grid is created on which to run the k-Wave simulation.
The FPE is incorporated as a N2 sensor placed parallel to the xy-plane in the extended
computational grid with corner at (Nc−N

2 + 1, Nc−N
2 + 1, Nc−N

2 + 1). The speed of sound is
defined corresponding to the average speed of sound in human tissue [30]. The sensor data
is stored in a N × N × T array, and we proceed as described in Section 2.4. The parameters
chosen for the simulations are defined in Table 1.

Table 1. The parameters used in our simulations and their associated values.

Parameter Description Value

N length of IPD grid [pixels] 64

Nc length of computational grid [pixels] 96

NL width of boundary condition layer [pixels] 15

cs speed of sound in the medium [m/s] 1540

h pixel width [µm] 122

f center frequency [MHz] 5

T total time steps 400

∆t time step size [ns] 24

α [pixels-widths/s] 12

s downsize factor 4
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To test our new method we will consider (1) the base case cylinder IPD, (2) the base
case cylinder IPD rotated so that its axis is parallel to the x-axis, and (3) a vessel-like IPD
with ten total vessels. The rotated cylinder is included to analyze how the orientation of
the cylinder relative to the direction of shearing affects reconstruction. In our simulations,
the direction of shearing is parallel to the x-axis. In this analysis, the probability that a
given pixel, m, in the mask is set to one is varied. For this purpose we define

p = Prob(m = 1). (7)

The cylinder is passed through the forward model and then added noise to the final image
before attempting reconstruction. The regularization parameter in (6) was chosen as
λ = 2.5× 10−3, which was optimized heuristically for the no noise case. The reconstruction
is performed for various levels of signal-to-noise ratio (SNR), which is defined as

SNR = 20 log10

(µ

σ

)
dB, (8)

where µ is the mean of the signal strength in its area of support and σ is the standard
deviation of the noise present. Note that µ is approximated over the inferred region of
support of the image.

3. Results
3.1. Baseline Test

As a baseline test, and to demonstrate that our methods perform as expected, Figure 3
displays the reconstruction of an IPD of a single impulse; that is, it contains all zeros
except for a single voxel that is set to a value of one. Since the matrix A is constructed
by passing each basis vector through the forward model, this is a good test to see if the
reconstruction algorithm is working as expected. We see in Figure 3 that, as predicted,
the reconstruction of the single impulse is spread across neighboring pixels with a peak at
the true impulse pixel.

3.2. Simulated Experiments

Having established our method performs as expected in the simple impulse case,
we now consider two primary types of more realistic IPDs, namely cylindrical IPDs and
vessel-like IPDs, each of which has binary-valued voxels representing either the presence
or lack thereof of an initial acoustic impulse response.

For the base case of the cylindrical IPDs, shown in Figure 4a, a solid cylinder with a
radius of six voxels, including the center voxel, and with axis parallel to the y-axis and
centered on the xz-plane is used. The vessel-like IPDs, an example of which is displayed in
Figure 4b, are constructed with a more random behavior meant to simulate the structure of
blood vessels in tissue, including growing and shrinking as well as branching vessels.

In our experiments, we used Gaussian noise with mean zero and variance dependent
on the desired SNR parameter given by (8). For each value of SNR examined, the image
reconstruction was performed five times (after adding noise as described in Section 2). The
average value of MS-SSIM and MSE over those five trials was then computed. Shown in
Figure 5 are the MSE and MS-SSIM results for the reconstruction of the cylinder IPD parallel
to the y-axis, the cylinder IPD parallel to the x-axis, and the vessel IPD, all for different
values of p in (7), as well as one using the normalized time reversal reconstruction included
with the k-Wave toolbox. The k-Wave reconstruction is performed without compression
on the data acquired from the FPE with the appropriate noise added. For SNR greater
than 0 dB, we observe that our method performs consistently better than the k-Wave
reconstruction for p values between 0.2 and 0.9, and the accuracy of the reconstruction
tends to increase faster with our method than with the k-Wave reconstruction as the
SNR increases.
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Figure 3. (a) A cross-section of the ground truth impulse IPD and (b–d) cross-sections of a no-noise reconstruction of the
impulse IPD. Here we use regularization parameter λ = 2.5× 10−4 in (6).

Figure 4. (a) The base case cylindrical IPD and (b) an example of a vessel-like IPD.
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Figure 5. Average MS-SSIM (a) and average MSE (b) of a cylinder IPD with a radius of six perpendicular to the direction
of shearing. Average MS-SSIM (c) and average MSE (d) of a cylinder IPD with a radius of 6 h parallel to the direction of
shearing. Average MS-SSIM (e) and average MSE (f) of a vessel IPD with ten vessels present. Each point is averaged over
five trials for each SNR value considered and is plotted against the SNR value used to calculate the additive Gaussian noise.

We now examine the effects of varying cylinder size on the reconstruction using the
base case cylindrical IPD. We fix the amount of noise added so that SNR ≈ 27 dB and
examine the reconstruction using different values for the radius of the cylinder, including
the center voxel, in the cylindrical IPD. The results displayed in Figure 5 show comparable
performance for p values between 0.2 and 0.8 in (7). The value of p = 0.3 was selected for
all subsequent analyses. Figure 6 displays the MSE and MS-SSIM results.

We next examine the effect of increased complexity on the reconstruction. The amount
of noise is fixed so that SNR ≈ 25 dB. Using the vessel-like IPDs, the reconstruction is
attempted for an increasing number of vessels. These results are displayed in Figure 7.

An important consideration in these reconstructions is the choice of regularization
parameter, λ in (6). While the optimal regularization parameter is a function of the noise
present in the system, it is desirable for the method to be robust in terms of choice of
regularization parameter. Figure 8 displays results for the reconstruction of a cylinder
orthogonal to the direction of shearing and of a vessel-like IPD with ten vessels present for a
range of regularization parameters λ in (6). Observe that our method performs consistently
for the same choice of regularization parameter across various noise levels for both the
MS-SSIM and MSE metrics. Figure 8 (right) also demonstrates that the method is robust
with respect to the choice of regularization parameter for the vessel-like IPD reconstruction.
On the other hand, the large jump displayed in Figure 8 (left) shows that the method is not
as robust with respect to the choice of the regularization parameter for the single-cylinder
case. We speculate that this might be due to the fact that most of the true underlying image
has zero value, making it difficult to tune the regularization parameter. We do not see this
lack of robustness as a practical issue, however, since real-world applications more closely
resemble the multiple vessel case. This issue will be investigated in future work.
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Figure 6. Average MSE (a) and average MS-SSIM (b) of the reconstructed cylinder IPD with varying radius, averaged over
five trials for each radius value considered. A cross section of the ground truth cylinder with radius of five (c), ten (d) and
fifteen (e) voxel widths and a cross section of the reconstruction of the same cylinder, respectively, (f–h). Each cylinder
considered is orthogonal to the xz-plane.
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Figure 7. Average MSE (a) and average MS-SSIM (b) of the reconstructed vessel IPDs with a varying number of vessels
present, averaged over twenty IPDs for each number of vessels considered. Ground truth projection onto the xy-plane of a
four vessel IPD (c), eight vessel IPD (d), and twelve vessel IPD (e), and the reconstruction of the same IPDs, respectively,
(f–h). In images (c–h), hue represents depth in the z-dimension, with the colorbar indicating pixel lengths away from the
FPE, while intensity is proportional the value of the voxels after being thresholded at 0.15.
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Figure 8. Average MSE (a) and average MS-SSIM (b) of the reconstructed cylinder IPD as well as average MSE (c) and
average MS-SSIM (d) of the reconstructed vessel-like IPD, averaged over five trials for each value of the regularization
parameter considered. Low, medium, and high values of SNR are considered for comparison.

4. Discussion

In this paper, we modeled a new method for compressed single-shot PA image
reconstruction using various types of DMDs to encode temporal information, and then
demonstrated through simulated experiments that our approach is capable of accurately
reconstructing a variety of IPDs. Moreover, it is robust in the presence of additive Gaussian
white noise. We note that while the IPDs modeled here are piecewise constant, the k-Wave
toolbox uses methods best-suited for smooth IPDs. We do not anticipate this presenting
issues in real-world applications, since the physical process will not experience the aliasing
that is observed with the k-Wave simulations.

Figure 5 demonstrates that for a range of probabilities that a given pixel in the binary
mask is turned on, i.e., 0.2 ≤ p ≤ 0.8, the performance of our method is consistently better
than the k-Wave reconstruction whenever SNR ≥ 0 dB. This is a significant improvement
given that the k-Wave reconstruction is done with the full time-series data and that our
method experiences approximately 25-fold compression. While the random construction
of the mask was effective in the simulations, there may be other ways to construct the
mask leading to more accurate reconstructions in some cases. This will be the subject of
future work.

Figures 6 and 7 demonstrate the effectiveness of the reconstruction as the number of
nonzero values increases in the system, and we note that we are able to achieve accurate
reconstructions in the presence of both large and complex vessel systems.

In future investigations we will assemble the optical system and employ the methods
and techniques discussed here to reconstruct phantoms using images generated by the
physical forward model. In the construction and implementation of the physical optical
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system, there are several considerations regarding the continuous wave laser for which to
account. In the simulations considered here, the sample was assumed to be under uniform
illumination by the laser, while the real system will likely experience a more Gaussian-
type illumination. A correction to the forward model would then be needed for spatially
varying beam intensity. In addition, the FPE cavity must be tuned to match the wavelength
of the continuous wave laser. Nanoscopic variations in cavity thickness could prove
detrimental to the sensitivity of the system. Finally, the imaging sensor must be selected
to have adequate sensitivity to the continuous wave laser wavelength. As the sweeping
speed is increased to reach adequate sampling in time, fewer photons are incident on each
camera pixel. Thus, MHz sampling rates may require a sensitive camera and relatively
high-power laser.
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Abbreviations
The following abbreviations are used in this manuscript:

PA photoacoustic
FPE Fabry–Pérot etalon
DMD digital micro-mirror device
IPD initial pressure distribution
TwIST Two-Step Iterative Shrinkage/Thresholding
IST iterative shrinkage/thresholding
IRS iterative reweighted shrinkage
MSE mean square error
MS-SSIM multi-scale structural similarity
SNR signal-to-noise ratio
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