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Approximating the uncertainty of deep learning
reconstruction predictions in single-pixel imaging
Ruibo Shang1,2, Mikaela A. O’Brien1, Fei Wang3,4, Guohai Situ3,4,5 & Geoffrey P. Luke 1✉

Single-pixel imaging (SPI) has the advantages of high-speed acquisition over a broad

wavelength range and system compactness. Deep learning (DL) is a powerful tool that can

achieve higher image quality than conventional reconstruction approaches. Here, we propose

a Bayesian convolutional neural network (BCNN) to approximate the uncertainty of the DL

predictions in SPI. Each pixel in the predicted image represents a probability distribution

rather than an image intensity value, indicating the uncertainty of the prediction. We show

that the BCNN uncertainty predictions are correlated to the reconstruction errors. When the

BCNN is trained and used in practical applications where the ground truths are unknown, the

level of the predicted uncertainty can help to determine whether system, data, or network

adjustments are needed. Overall, the proposed BCNN can provide a reliable tool to indicate

the confidence levels of DL predictions as well as the quality of the model and dataset for

many applications of SPI.
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S ingle-pixel imaging (SPI)1–3 is a novel imaging technique
which uses a single-element photodetector to record the
image information instead of using pixel array image sen-

sors. The object is sequentially illuminated by a set of specially
designed patterns and the total intensity light for each pattern
illumination is collected as a single-pixel value by the
photodetector1. Finally, computational algorithms are applied to
reconstruct the object with the sequential intensity collections and
the illumination patterns. SPI has many advantages including
high speed, broad bandwidth and compact imaging4. It also has
many applications including remote sensing5, holography6,7,
optical encryption8,9 and tomography10.

One of the most common reconstruction methods in SPI is
sparsity-based optimization which seeks to reconstruct images
from incomplete measurements11,12 by incorporating the
knowledge that most natural images are sparse when the image is
transformed into a specific domain. However, the primary
drawback is that it is time consuming because of its iterative
nature. An image reconstruction task can take up to hours to
compute if the scale of the model or scope of the problem is large.
Therefore, real-time imaging is infeasible for applications that
require pipelined data acquisition and image reconstruction13.
Besides, the optimal algorithm-specific parameters (i.e., the reg-
ularization parameter) generally need to be heuristically
determined13.

Deep learning (DL)14,15 is an emerging and powerful compu-
tational imaging tool dramatically improving the state-of-the-art
in image reconstruction compared with conventional recon-
struction algorithms16–22. It relies on large amounts of training
data to automatically learn tasks by finding the optimal weights in
each layer of a neural network15. This is in contrast to iteratively
optimizing the image with a specific model in sparsity-based
optimization approaches. Therefore, DL is a promising alternative
to augment or replace iterative algorithms in sparsity-based
optimization13. Researchers have applied DL approaches in SPI to
improve the quality of the reconstructed images compared with
conventional approaches13,23–27. For instance, a DL approach was
proposed to predict the image in SPI with an initial guess of the
image from conventional approaches as the input to the DL
network to further improve the image quality at high compres-
sion ratios and noise levels24. End-to-end DL approaches13,26

were proposed to predict the image in SPI directly from the raw
measurement data without the knowledge of the imaging model
and therefore no pre-processing of the raw measurement data is
needed.

Generally, the accuracy of the DL predictions in SPI can be
quantified by comparing with the ground-truth images13 (e.g.,
calculating mean absolute error (MAE), root mean squared error
and structural similarity index (SSIM)28). However, one out-
standing challenge is that the ground truth is usually unknown
during the prediction stage in many practical applications.
Therefore, the accuracy of the DL prediction of a particular image
cannot be estimated.

Bayesian convolutional neural networks (BCNNs) have been
shown to be an effective approach to approximate the uncertainty
with applications including image segmentation29, phase
imaging19, optical metrology30 and image classification31. BCNN
works on the principle that each pixel in the output image
represents the parameter of a probability distribution (e.g.,
Laplacian or Gaussian distribution), rather than a single intensity
value32. Then, the uncertainty can be quantified by Monte Carlo
dropout33 or Deep Ensembles34, for example. BCNNs have many
advantages over conventional convolutional neural networks
(CNNs). One outstanding advantage is that when the prediction
of the image fails in a practical application (i.e., the ground truth
is unknown), the BCNN is able to provide an alert on predicted

images with high uncertainty. With the alert, one could conse-
quently make adjustments for better performance.

In this paper, we propose to use a BCNN in SPI to simulta-
neously predict the image and the pixel-wise uncertainty to
quantify the accuracy of the predicted image. We show the BCNN
predictions of the image and uncertainty in both simulated and
experimental SPI with analysis in details. Overall, these results
show that uncertainty approximation can be used to reliably
interpret the result of a compressed computational imaging
problem.

Results
The BCNN predictions in the simulated SPI trained with the
MNIST database. Figure 1a shows a representative ground-truth
image in the testing dataset, input images to the network calcu-
lated from the LSQR-approximated35 inverse model matrix and
BCNN predictions (with all three likelihood functions) at 8×, 16×,
32× and 64× compression ratios. To quantitatively compare the
BCNN predictions with the three likelihood functions, the mean
and standard deviation of the MAE and SSIM for all the predicted
images, and the correlation coefficient (R) between the true
absolute error (difference between the ground-truth image and
the predicted image) and the predicted uncertainty in the testing
dataset at each compression ratio were calculated following Eq. 1
and shown in Fig. 1b–d.

R ¼ 1
N � 1

∑
N

i¼1

Ai � μA
σA

� �
Bi � μB

σB

� �
ð1Þ

where A is the true absolute error, B is the predicted uncertainty,
μA is the mean of A, σA is the standard deviation of A, μB is the
mean of B, σB is the standard deviation of B, i is the pixel number
and N is the total number of pixels.

Both the qualitative and quantitative results show that the
accuracy of the predicted images from the three likelihood
functions decreases as the compression ratio increases. This is
verified with an increase of the true absolute error in Fig. 1a, an
increase of the MAE in Fig. 1b and a decrease of the SSIM in
Fig. 1c. This is reasonable since higher compression ratio means
higher model ill-posedness which results in solving a more
difficult imaging inverse problem13. However, the predicted
images in BCNN with the Bernoulli-distributed likelihood
function are more accurate than those with the Laplacian-
distributed and Gaussian-distributed likelihood functions, espe-
cially at higher compression ratios. In terms of the predicted
uncertainties, the BCNN with the Bernoulli-distributed likelihood
function still performs better than the ones with Laplacian-
distributed and Gaussian-distributed likelihood functions. In the
BCNN with the Bernoulli-distributed likelihood function, the
predicted uncertainties generally match well with the true
absolute error. The regions of the predicted image from BCNN
with larger errors are generally marked with higher uncertainty
values in the predicted uncertainty. It can be observed from the
true absolute error and predicted uncertainty that most of the
higher inaccuracies come from the edges of the image features.
However, the predicted uncertainties in the BCNN with
Laplacian-distributed and Gaussian-distributed likelihood func-
tions do not match well with the true absolute error. For instance,
as shown in Fig. 1a at the 8× compression ratio, higher true
absolute errors in the predicted images of BCNN with the two
likelihood functions mostly come from the edges of the image
features while the predicted uncertainties indicate higher
uncertainties not only on the edges but also within the feature
regions. The improved performance of the uncertainty predic-
tions with the Bernoulli-distributed likelihood function can also
be quantitatively seen in Fig. 1d with a generally higher
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correlation coefficient between the predicted uncertainty and the
true absolute error.

We also explored the effect of noise on both the image and
uncertainty predictions in BCNN (Supplementary Note 1). The
results show that the performance of BCNN decreases as the
signal-to-noise ratio (SNR) decreases from 25 dB to 0 dB.

However, the fidelity of the corresponding result is still at a high
level even if the data SNR is as low as 0 dB, suggesting good
robustness to noise.

In summary, for the MNIST database36, the BCNN with the
Bernoulli-distributed likelihood function performs the best
among the BCNNs with three distribution likelihood functions.

Fig. 1 The BCNN predictions in the simulated SPI trained with the MNIST database. a A representative ground-truth image in the testing dataset, input
images to the BCNN calculated from the LSQR-approximated inverse model matrix and the BCNN predictions with Bernoulli-distributed, Laplacian-
distributed and Gaussian-distributed likelihood functions at the 8×, 16×, 32× and 64× compression ratios. b The MAEs of the predicted images in BCNN
with the three likelihood functions at the four compression ratios. c The SSIMs of the predicted images in BCNN with the three likelihood functions at the
four compression ratios. d The correlation coefficient, R, between the predicted uncertainty and the absolute error of each pixel the predicted images
reconstructed with the three likelihood functions at the four compression ratios. e Averaged pixel values of the predicted data and model uncertainties in
the testing dataset with the Bernoulli-distributed likelihood function at the four compression ratios. The error bars represent the standard deviation of the
corresponding parameters from 100 testing images.
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The BCNNs with the Laplacian-distributed and Gaussian-
distributed likelihood functions are not suitable for the MNIST
database. This is reasonable since the modified images in the
MNIST database are binary, which fits with the Bernoulli
distribution. In addition, it is observed that the data uncertainty
is dominant over the model uncertainty. This effect becomes
more pronounced at higher compression ratios. This can be
shown quantitatively by the averaged pixel values in the predicted
data and model uncertainties in the testing dataset with the
Bernoulli-distributed likelihood function in Fig. 1e. We hypothe-
size that this comes from the compressed nature of the
measurement data in the training set of the MNIST database.

Effect of the physics-prior based preprocessor and uncertainty
estimation on network performance. For the BCNN predictions
shown in Fig. 1, a pre-processing step was used to convert the
inputs of the neural network from measurement domain into
image domain. In this section, we sought to explore the effect of
the physics-prior based preprocessor to the BCNN performance.
We also compared the performance of BCNN with the conven-
tional CNN, which does not have the uncertainty prediction. We
denote BCNN as the BCNN with the physics-prior based pre-
processor, End-To-End BCNN as the BCNN with the one-
dimensional (1D) raw measurement data as the network input,
CNN as the CNN with the physics-prior based preprocessor but
without the uncertainty prediction function, and End-To-End
CNN as the CNN without either the physics-prior based pre-
processor or the uncertainty prediction function. To solve the
dimension mismatch between the 1D raw measurement data and
the two-dimensional image, a fully-connected layer (together with
reshape and permute layers) was added in between the input layer
and the first convolutional layer of the BCNN to generate End-
To-End BCNN. CNN and End-To-End CNN have the same
network structures as BCNN and End-To-End BCNN respec-
tively, except that there is no uncertainty prediction incorporated
in the loss function. The Bernoulli-distributed likelihood function
was used in BCNN and End-To-End BCNN. The training and
validation curves are shown in Supplementary Fig. 3.

Figure 2a shows the ground-truth image, the input images for
BCNN and CNN, the 1D raw measurement data as the input to
End-To-End BCNN and End-To-End CNN, and predictions
from BCNN, CNN, End-To-End BCNN and End-To-End CNN
at 8×, 16×, 32× and 64× compression ratios. To quantitatively
compare BCNN, CNN, End-To-End BCNN and End-To-End
CNN, the mean and standard deviation of the MAE and SSIM
for all the predicted images were calculated and shown in
Fig. 2b, c. Figure 2d, e show the averaged pixel values of the
predicted model and data uncertainties in BCNN and End-To-
End BCNN in the testing dataset at the four compression ratios.
The results show that BCNN and CNN have comparable
performance on image predictions in terms of MAE and SSIM
(Fig. 2b, c), which means that the extra uncertainty predictions
in BCNN do not affect its image predictions compared to the
conventional CNN. The results also show that BCNN and CNN
have better performance in image predictions than End-To-End
BCNN and End-To-End CNN in terms of MAE and SSIM. The
reason for this outperformance is that BCNN and CNN
incorporate physics priors to obtain the initial-guess images as
the network inputs to reduce the uncertainty from the data, thus
improving the image predictions. This can also be verified in
Fig. 2e where BCNN has lower data uncertainties than End-To-
End BCNN at all the four compression ratios. Besides, BCNN
and End-To-End BCNN have roughly the same model
uncertainties at all the four compression ratios since they have
similar network structures.

The BCNN predictions in the simulated SPI trained with the
STL-10 database. In this section, we explore the BCNN perfor-
mances with the three likelihood functions in the simulated SPI
with a more challenging task where the STL-10 database37 with
more complexed image features is used for training and predic-
tions. Figure 3a shows a representative ground-truth image in the
testing dataset, input images to the network calculated from the
LSQR-approximated inverse model matrix and Fig. 3b shows
BCNN predictions (with all three likelihood functions) at 2×, 4×,
8× and 16× compression ratios. The mean and standard deviation
of the MAE and SSIM for all the predicted images, and the
correlation coefficient between the true absolute error and the
predicted uncertainty in the testing dataset with the three like-
lihood functions at each compression ratio were calculated and
shown in Supplementary Table 1.

The results in Fig. 3 and Supplementary Table 1 show that the
accuracy of the predicted images from the three likelihood
functions decreases as the compression ratio increases, which is
reasonable since higher compression ratio means higher model
ill-posedness which results in solving a more difficult imaging
inverse problem13. Besides, the prediction of the images in
BCNNs with the three likelihood functions performs close to each
other as shown qualitatively in the predicted-image rows in
Fig. 3b and quantitatively in terms of MAE and SSIM in
Supplementary Table 1. The predicted uncertainties in BCNNs
with the Laplacian-distributed and Gaussian-distributed like-
lihood functions match well with the true absolute error since the
regions where the predicted image from BCNN has larger errors
are generally marked with higher uncertainty values in the
predicted uncertainty. However, the predicted uncertainties in
BCNN with the Bernoulli-distributed likelihood function are
much worse as shown qualitatively in Fig. 3b where the low true-
absolute-error pixels are marked with higher uncertainty values in
the predicted uncertainty instead, and quantitatively in Supple-
mentary Table 1 where the correlation coefficient R between the
true absolute error and the predicted uncertainty from the BCNN
with the Bernoulli-distributed likelihood function are much lower
than those with the Laplacian-distributed and Gaussian-
distributed likelihood function. This is reasonable since the loss
function for the Bernoulli distribution in Eq. 16 also minimizes
the error between the mean of the pixel distribution and the
ground truth. Therefore, the predictions of the images perform
close to those using the Laplacian-distributed and Gaussian-
distributed likelihood function. The uncertainty prediction,
however, is dependent on both the predicted mean and the
predicted standard deviation. In the case of the Bernoulli
distribution and STL-10 dataset, the predicted standard deviation
denotes how far the pixel value is from 1 or 0 since it expects a
binary image, while the images in the STL-10 database are in gray
scale. In this case, the data uncertainty and the overall uncertainty
calculated from Eq. 21 will be wrong. The model uncertainty
which is the variance of the predicted mean with Monte Carlo
Dropout, however, is reasonable since the predicted mean is
correct. Therefore, it indicates that when using BCNN to make
predictions in SPI with the STL-10 database, the Laplacian-
distributed and Gaussian-distributed likelihood functions can be
used while the Bernoulli-distributed likelihood function is not
suitable. It is also observed that the predicted uncertainty and the
true absolute error from the Laplacian-distributed and Gaussian-
distributed likelihood functions are only modestly correlated. The
modest correlation comes from the fact that not all areas of
higher uncertainty necessarily have high error. They merely point
out pixels where high errors are likely to occur. A perfect
correlation would indicate that perfect reconstruction is possible.
Besides, similar to the observations in the other simulations, it
can still be observed from the true absolute error and predicted
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Fig. 2 Comparisons among BCNN, CNN, End-To-End BCNN and CNN in the simulated SPI trained with the MNIST database. a A representative ground-
truth image in the testing dataset, input images to the BCNN and CNN calculated from the LSQR-approximated inverse model matrix, 1D raw measurement
data as the input to End-To-End BCNN and End-To-End CNN, and the predictions from BCNN, CNN, End-To-End BCNN and End-To-End CNN at the 8×,
16×, 32× and 64× compression ratios. b The MAEs of the predicted images in BCNN, CNN, End-To-End BCNN and End-To-End CNN at the four
compression ratios. c The SSIMs of the predicted images in BCNN, CNN, End-To-End BCNN and End-To-End CNN at the four compression ratios.
d Averaged pixel values of the predicted model uncertainties in BCNN and End-To-End BCNN in the testing dataset at the four compression ratios.
e Averaged pixel values of the predicted data uncertainties in BCNN and End-To-End BCNN in the testing dataset at the four compression ratios. The error
bars represent the standard deviation of the corresponding parameters from 100 testing images.
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uncertainty that most of the higher inaccuracies come from the
edges of the image features, and that the data uncertainty is
dominant over the model uncertainty.

We also quantitatively compared BCNN, CNN, End-To-End
BCNN and End-To-End CNN with the STL-10 database in the
simulated SPI at the 4× compression ratio. The Laplacian-
distributed likelihood function was used in BCNN and End-To-
End BCNN. The results are shown in Supplementary Fig. 4.
Similar to the comparisons of the four neural networks with the
MNIST database, BCNN and CNN have similar performance on
image predictions in terms of MAE and SSIM, which means that
the extra uncertainty predictions in BCNN do not affect its image
predictions compared to the conventional CNN. The results also
show that BCNN and CNN have better overall performance in
image predictions than End-To-End BCNN and End-To-End
CNN in terms of MAE and SSIM.

Thus far, the BCNN was applied separately to either the
MNIST and STL-10 database. We also explored a different
training strategy where the BCNN was trained with a mixture of
the MNIST and STL-10 databases (Hybrid Training) with either
Laplacian-distributed or Bernoulli-distributed likelihood func-
tions. We quantitatively compared its performance with the one
trained on the two databases separately (Separate Training) in
Supplementary Note 2. The results show that Separate Training
has better overall performance in image and uncertainty
predictions than Hybrid Training.

Experimental results. Figure 4a shows representative ground-
truth images from the testing dataset. Input images and the
predictions of BCNN at 16× and 64× compression ratios are
shown in Fig. 4b, c. The BCNN provides reasonably good pre-
dicted images in SPI at both 16× and 64× compression ratios.
However, the images at 64× are in poorer quality than those at
16×. This can be visualized from the true absolute errors in

Fig. 4b, c. Quantitative results of BCNN predictions are shown in
Fig. 5c–e. In terms of the predicted images, the performance of
the BCNN decreases as the compression ratio increases from 16×
to 64×. However, it still remains at a good level with an MAE
lower than 0.1 and an SSIM higher than 0.6. The performance of
the BCNN in terms of the predicted uncertainty remains at
almost the same level at the two compression ratios, showing its
great robustness. Visually, the predicted uncertainty generally
matches well with the true absolute error in Fig. 4b, c. The regions
where the predicted image from BCNN has larger errors are
generally marked with higher uncertainty values in the predicted
uncertainty. It can still be observed from the true absolute error
and predicted uncertainty that most of the higher inaccuracies
come from the edges of the image features. Again, the data
uncertainty is dominant over the model uncertainty due to the
compressed nature and noise in the training dataset.

We also quantitatively compared BCNN, CNN, End-To-End
BCNN and End-To-End CNN in this experimental SPI with the
MNIST database. Figure 5a shows a representative ground-truth
image, the input images for BCNN and CNN, the 1D raw
measurement data as the input to End-To-End BCNN and End-
To-End CNN, and predictions from BCNN, CNN, End-To-End
BCNN and End-To-End CNN at 16× and 64× compression
ratios. Figure 5b shows a representative ground-truth image out
of the MNIST database, the input images for BCNN and CNN,
the 1D raw measurement data as the input to End-To-End BCNN
and End-To-End CNN, and predictions from BCNN, CNN, End-
To-End BCNN and End-To-End CNN at 16× and 64×
compression ratios. It shows that BCNN has good generalization
performance in the experimental SPI. To quantitatively compare
BCNN, CNN, End-To-End BCNN and End-To-End CNN, the
mean and standard deviation of the MAE and SSIM for all the
predicted images were calculated and are shown in Fig. 5c, d.
Figure 5e shows the mean and standard deviation of the

Fig. 3 The results of BCNN with Laplacian-distributed, Gaussian-distributed and Bernoulli-distributed likelihood functions in simulated SPI with STL-
10 dataset at 2×, 4×, 8× and 16× compression ratios. a A representative ground-truth image in the testing dataset, input images to the BCNN calculated
from the LSQR-approximated inverse model matrix at the 2×, 4×, 8× and 16× compression ratios. b BCNN predictions with Laplacian-distributed, Gaussian-
distributed and Bernoulli-distributed likelihood functions at the 2×, 4×, 8× and 16× compression ratios.
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correlation coefficient R in BCNN and End-To-End BCNN for all
the predicted images. The training and validation curves are
shown in Supplementary Fig. 5. The results show that CNN has
only slightly better performance than the BCNN (Fig. 5c, d),
which means that the extra uncertainty predictions in BCNN do
not appreciably affect their image predictions compared to the
conventional CNN. The results also show that BCNN and CNN
have similar performance in image predictions compared to End-
To-End BCNN and End-To-End CNN in terms of MAE and
SSIM, which is slightly different from the corresponding
conclusion in the simulated case. The reason for the difference
is that random grayscale patterns were used in the experiments
instead of Russian-Doll (RD) Hadamard patterns used in the
simulation, leading to a more ill-posed inverse problem. There-
fore, even though BCNN and CNN incorporate physics priors to
obtain the initial-guess images as the network inputs, the data
uncertainty is not reduced, thus not improving the image
predictions. Besides, BCNN and End-To-End BCNN have

roughly the same correlation coefficient R at both compression
ratios as shown in Fig. 5e, indicating that they have similar
performance in uncertainty predictions.

Discussion
The BCNN is proposed for uncertainty approximation in SPI
with Bernoulli-distributed, Laplacian-distributed or Gaussian-
distributed likelihood functions with the MNIST and STL-10
databases. First, the BCNNs with the three distribution likelihood
functions were compared in simulated SPI with the MNIST
database at varying compression ratios and the Bernoulli-
distributed likelihood function was proved to be the most
appropriate among the three functions. Second, the robustness of
BCNN to noise from the measurement data was studied with the
Bernoulli-distributed likelihood function and the MNIST data-
base (Supplementary Note 1). Third, the three likelihood func-
tions were compared in BCNN in simulated SPI with STL-10
dataset and the Laplacian-distributed and Gaussian-distributed

Fig. 4 Experiment results with BCNN in SPI with the MNIST dataset at 16× and 64× compression ratios. a Ten representative ground-truth images from
the MNIST testing dataset. b Input images and predictions of BCNN in SPI at 16× compression ratio. c Input images and predictions of BCNN in SPI at 64×
compression ratio.
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likelihood functions were shown to be equivalent and both better
than the Bernoulli-distributed likelihood function in this appli-
cation. Fourth, different training strategies were compared in
Supplementary Note 2. Fifth, in experiments, the BCNN with
Bernoulli-distributed likelihood functions was used and verified
in experimental SPI with the MNIST dataset at 16× and 64×
compression ratios. In all the simulations and experiments, the
performances of BCNN, CNN, End-To-End BCNN and End-To-
End CNN were quantitatively evaluated to study the effect of the
physics-prior based preprocessor and the uncertainty estimation
on network performance.

BCNNs have advantages over conventional CNNs. As shown
in Figs. 1–5, BCNNs not only predict the image as conventional
CNNs do but also provide a reliability assessment to indicate the
pixel-wise uncertainties of DL predictions as well as the quality of
the model and dataset with model uncertainty and data uncer-
tainty respectively. As the quality of the predicted images
decreases, the corresponding uncertainty values increase to
indicate this change of the quality. For a specific predicted image,
the pixel-wise uncertainty prediction tells the error of each pixel
in the predicted image and highlights where the large errors occur
in the predicted image. This is especially useful to evaluate the
prediction of the neural network when the ground truth is

unknown in many practical applications, and the level of the
predicted uncertainty can be used to determine whether some
adjustments in the imaging system, training data, and/or network
architecture are needed.

However, several aspects of this work still need further
exploration. First, how to choose the optimal probability-
distributed likelihood function in BCNN efficiently is a problem
that needs to be explored. In this work, we trained the BCNN
with the potential probability-distributed likelihood functions and
then compared the results to find the optimal one. However, the
drawback is that it is time consuming. Based on our experience,
the Bernoulli-distributed likelihood function works well on binary
images, and the Laplacian-distributed and Gaussian-distributed
likelihood functions work equally well on natural grayscale ima-
ges. We would like to propose a method to find the optimal
distribution before training using the dataset statistics and net-
work architecture. Second, it is observed that the data uncertainty
is dominant over the model uncertainty in both simulations and
experiments due to the compressed nature and noise in the
measurement data in the training dataset. We would like to
search for more advanced pre-processing approaches to decrease
the uncertainty stemming from the measurement data. Third, we
would like to explore ways to use the predicted uncertainty as a

Fig. 5 Comparisons among BCNN, CNN, End-To-End BCNN and CNN in the experimental SPI trained with the MNIST database. a A representative
ground-truth image in the testing dataset, input images to the BCNN and CNN calculated from the LSQR-approximated inverse model matrix, 1D raw
measurement data as the input to End-To-End BCNN and End-To-End CNN, and the predictions from BCNN, CNN, End-To-End BCNN and End-To-End
CNN at the 16× and 64× compression ratios. b A ground-truth image out of the testing dataset in the MNIST database, input images to the BCNN and CNN
calculated from the LSQR-approximated inverse model matrix, 1D raw measurement data as the input to End-To-End BCNN and End-To-End CNN, and the
predictions from BCNN, CNN, End-To-End BCNN and End-To-End CNN at the 16× and 64× compression ratios. c The MAEs of the predicted images in
BCNN, CNN, End-To-End BCNN and End-To-End CNN at the two compression ratios. d The SSIMs of the predicted images in BCNN, CNN, End-To-End
BCNN and End-To-End CNN at the two compression ratios. e The correlation coefficient, R, between the predicted uncertainty and the true absolute error
of each pixel the predicted images reconstructed in BCNN and End-To-End BCNN at the two compression ratios. The error bars represent the standard
deviation of the corresponding parameters from 100 testing images.
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feedback to optimize the BCNN structures to further decrease the
uncertainty of the results, or to decrease the network complexity
without a loss in performance.

In summary, the proposed BCNN enables uncertainty
approximation in SPI. It is a reliable tool in diverse applications
in SPI where the confidence on the predicted images needs to be
approximated.

Methods
Mathematical basis of SPI. Here, we focus our discussion on
two-dimensional imaging in SPI. We denote the object as Oðx; yÞ,
and the set of patterns used to illuminate the object as Pm ðx; yÞ,
where m= 1,2,…,M (M is the total number of patterns). The 1D
signal acquired in SPI can be written as,

Im ¼
Z

Pmðx; yÞOðx; yÞdxdy ð2Þ

When the signal is sampled at discrete pixel locations, Eq. (2)
can be written as,

Im ¼ ∑
Nx

a¼1
∑
Ny

b¼1
Pmðxa; ybÞOðxa; ybÞ ð3Þ

where xa and yb denote discrete pixel locations. Nx and Ny denote
the total pixel numbers in x and y dimensions.

Equation (3) represents a linear model, and can be written as
matrix multiplication by

g ¼ Hf þ n ð4Þ
where f is the vectorized version of the object O (the dimension
of f is NxNy ´ 1), g is the raw measurement (the dimension of g is
M ´ 1), n is the noise and H is the forward operator, where the
mth row of H contains the vectorized version of the illumination
pattern Pm (the dimension of H is M ´NxNy).

The inverse problem of Eq. (4) is ill-posed due to the
compression property of SPI. Therefore, a regularized optimiza-
tion approach is usually used in SPI to incorporate additional
knowledge about the image by adding a regularization term,

f̂ ¼ argmin
f

kHf � gk22 þ λϕðf Þ� �
ð5Þ

where ϕ is the regularization operator and λ is the regularization
parameter. kHf � gk22 is the fidelity term and ϕðf Þ is the
regularization term. Common regularization domains include
spatial, edge, and wavelet domains. Equation (5) can be solved by
iterative optimization approaches or deep learning approaches.

Bayesian networks for uncertainty approximation. As opposed
to conventional convolutional neural networks where the weights
are deterministic after training, BCNNs use distributions over the
network parameters to replace the deterministic weights in the
network32. This probabilistic property of BCNN come from the
stochastic (random) processes in the network such as dropout38,
weight initialization39 etc. Suppose the training dataset is denoted
as X;Yð Þ ¼ fxn; yngNn¼1 with X and Y representing the network
inputs and ground-truth images, respectively. N is the total
number of images in the training dataset. To approximate the
variability of the prediction y given a specific input xtest;t in the
testing dataset Xtest ;Ytest

� � ¼ fxtest;t ; ytest;tgTt¼1
(T is the total

number of images in the testing dataset), we use the predictive
distribution pðyjxtest;t ;X;YÞ over all possible learned weights
(with marginalization)33:

p yjxtest;t ;X;Y
� 	

¼
Z

pðyjxtest;t ;WÞpðWjX;YÞdW ð6Þ

where pðyjxtest;t ;WÞ denotes the predictive distribution that

includes all possible output predictions given the learned weights
W and the input xtest;t from the testing dataset. It can be
understood as data uncertainty19. pðWjX;YÞ denotes all possible
learned weights given the training dataset, which can be under-
stood as model uncertainty19.

To model the data uncertainty, we need to define the
probability distribution of the BCNN outputs with a specific
likelihood function. In this paper, we choose the multivariate
Laplacian-distributed, Gaussian-distributed and Bernoulli-
distributed likelihood functions to model the data uncertainty.

(a) We define the multivariate Laplacian-distributed likelihood
function as:

pLaplacian yjx;W� � ¼ YM
m¼1

pLaplacian ymjx;W� � ð7Þ

pLaplacian ymjx;W� � ¼ 1
2σm

exp � ym � μm


 



σm

� �
ð8Þ

where m denotes the mth pixel in the BCNN output image,
M denotes the total number of pixels in the BCNN output
image, and μm and σm denote the mean and standard
deviation of the mth pixel in the BCNN output image,
respectively.
By taking logarithm and negative operations on Eq. (7), the
loss function LLaplacian Wjxn; yn

� �
for the Laplacian-

distributed likelihood function given the training data pair
(xn, yn) is:

LLaplacian Wjxn; yn
� � ¼ 1

M
∑
M

m¼1

ymn � μmn


 



σmn
þ logð2σmn Þ

� �
ð9Þ

(b) For multivariate Gaussian-distributed likelihood function,
we define:

pGaussian yjx;W� � ¼ YM
m¼1

pGaussian ymjx;W� � ð10Þ

pGaussian ymjx;W� � ¼ 1ffiffiffiffiffi
2π

p
σm

exp � ym � μm
� �2

2ðσmÞ2
" #

ð11Þ

where the denotations are the same as those in Eqs. (7) and
(8).
By taking logarithm and negative operations on Eq. (10),
the loss function LGaussian Wjxn; yn

� �
for the Gaussian-

distributed likelihood function given the training data pair
(xn, yn) is:

LGaussian Wjxn; yn
� � ¼ 1

M
∑
M

m¼1

ðymn � μmn Þ2
2ðσmn Þ2

þ logð
ffiffiffiffiffi
2π

p
σmn Þ

" #

ð12Þ
(c) For Bernoulli-distributed likelihood function, we define:

pBernoulli yjx;W� � ¼ YM
m¼1

pBernoulli y
mjx;W� � ð13Þ

pBernoulli y
m ¼ 1jx;W� � ¼ μm ð14Þ

pBernoulli y
mjx;W� � ¼ ðμmÞym ð1� μmÞ1�ym ð15Þ

where the denotations are the same as those in Eqs. (7) and (8).
By taking logarithm and negative operations on Eq. (13), the

loss function LBernoulli Wjxn; yn
� �

for the Bernoulli-distributed
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likelihood function given the training data pair (xn, yn) is:

LBernoulli Wjxn; yn
� � ¼ ∑

M

m¼1
½ðymn � 1Þlogð1� μmn Þ � ymn logðμmn Þ�

ð16Þ
We would like to learn the weights to maximize Eqs. (7), (10)

and (13) in the training dataset, which is equivalent to
minimizing the loss functions defined in Eqs. (9), (12) and
(16). There are two channels (μ and σ) in the BCNN output for
Laplacian-distributed and Gaussian-distributed likelihood func-
tions while there is only one channel (μ) in the BCNN output for
the Bernoulli-distributed likelihood function.

To measure the model uncertainty, we use the dropout
network33. A distribution qðWÞ is learned to approximate
pðWjX;YÞ (minimizing the Kullback-Leibler divergence between
qðWÞ and pðWjX;YÞ) by applying a dropout layer before every
layer that has learnable weights. During the prediction process,
the model uncertainty is approximated by Monte Carlo
dropout33. With Monte Carlo integration, the predictive
distribution pðyjxtest;t ;X;YÞ in Eq. (6) can be approximated as:

p yjxtest;t ;X;Y
� 	

�
Z

pðyjxtest;t ;WÞqðWÞdW � 1
K

∑
K

k¼1
pðyjxtest;t ;WkÞ

ð17Þ
where K is the total number of dropout activations during the
prediction process.

Finally, the predicted image can be represented by the
predicted mean μ̂mtest;t of the mth pixel for the testing data xtest;t
(for Laplacian-distributed, Gaussian-distributed and Bernoulli-
distributed likelihood functions) is:

μ̂mtest;t ¼ E½ymjxtest;t ;X;Y � �
1
K

∑
K

k¼1
E½ymjxtest;t ;Wk� � 1

K
∑
K

k¼1
μ̂m;k
test;t

ð18Þ
where E denotes the expectation and μ̂m;k

test;t denotes the predicted
μ of the mth pixel and kth dropout activation for the testing data
xtest;t .

The predicted uncertainty σ̂mtest;t of the mth pixel for the testing
data xtest;t for Laplacian-distributed likelihood function is:

σ̂mtest;t Laplacianð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ymjxtest;t;X;Y

� 	r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E Var ymjxtest;t;W;X;Y

� 	h i
þ Var E ymjxtest;t;W;X;Y

h i� 	r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E Var ymjxtest;t;W

� 	h i
þ Var E ymjxtest;t;W

h i� 	r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K
∑K

k¼1 2 σ̂m;k
test;t

� 	2
þ 1

K
∑K

k¼1 μ̂m;k
test;t � μ̂mtest;t

� 	2
r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̂mðDÞ
test;t

� 	2
þ σ̂mðMÞ

test;t

� 	2
r

ð19Þ
where Var denotes pixel-wise variance, σ̂m;k

test;t denotes the predicted
standard deviation of the mth pixel and kth dropout activation for

the testing data xtest;t . σ̂
mðDÞ
test;t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K ∑

K
k¼1 2ðσ̂m;k

test;tÞ
2

q
denotes the data

uncertainty and σ̂mðMÞ
test;t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K ∑

K
k¼1ðμ̂m;k

test;t � μ̂mtest;tÞ
2

q
denotes the

model uncertainty.
For Gaussian-distributed likelihood function:

σ̂mtest;tðGaussianÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K
∑K

k¼1 σ̂m;k
test;t

� 	2
þ 1

K
∑K

k¼1 μ̂m;k
test;t � μ̂mtest;t

� 	2
r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̂mðDÞ
test;t

� 	2
þ σ̂mðMÞ

test;t

� 	2
r

ð20Þ
where the denotations are the same as those in Eq. (19) and the
derivation of Eq. (20) is similar to that of Eq. (19).

For Bernoulli-distributed likelihood function:

σ̂mtest;tðBernoulliÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K
∑K

k¼1½μ̂m;k
test;tð1� μ̂m;k

test;tÞ� þ
1
K
∑K

k¼1 μ̂m;k
test;t � μ̂mtest;t

� 	2
r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ̂mðDÞ
test;t

� 	2
þ σ̂mðMÞ

test;t

� 	2
r

ð21Þ
where the denotations are the same as those in Eq. (19) and the
derivation of Eq. (21) is similar to that of Eq. (19).

We can find from Eqs. (19–21) that the data uncertainty
(σ̂mðDÞ

test;t ) is approximated by the mean of the predicted variance

and the model uncertainty (σ̂mðMÞ
test;t ) is approximated by the

variance of the predicted mean.

BCNN structures. The BCNN structures are shown in Fig. 6.
They follow the U-Net architecture40, which utilizes an encoder-
decoder structure with skip connections to preserve wide-
frequency features. This architecture was chosen because of its
success in solving image-to-image problems. Dropout layers with
a dropout rate of 0.1 were included before each convolution layer
of the U-Net in order to prevent overfitting during the training
process. L2 kernel regularizer and bias regularizer with the reg-
ularization factor of 1 ´ 10�6 were included in each convolution
layer. The network structure in Fig. 6 is used for Bernoulli-
distributed likelihood function. For Laplacian-distributed and
Gaussian-distributed likelihood functions, the same architecture
is used except that there are two output channels (for μ and σ).
The loss functions in Eqs. (9), (12) and (16) were used in BCNN
for Laplacian-distributed, Gaussian-distributed and Bernoulli-
distributed likelihood function, respectively. The BCNN was
trained on a NVIDIA Quadro M4000 GPU with an 8GB of
memory.

Data simulation and pre-processing. RD Hadamard41 patterns
are used as the sampling patterns in the simulated SPI. In RD
Hadamard patterns, the measurement order of the Hadamard
basis is reordered and optimized according to their significance
for general scenes, such that at discretized increments, the com-
plete sampling for different spatial frequencies is obtained41.

The MNIST database36 was used for training the BCNN with
800 images as the training dataset, 100 images as the validating

Fig. 6 The BCNN structure. The BCNN uses a U-Net architecture with an
encoder-decoder structure. Each level of the U-Net includes dropout and
convolutional (with ELU or Sigmoid activations) layers. The encoder and
decoder are connected through skip connections.

ARTICLE COMMUNICATIONS ENGINEERING | https://doi.org/10.1038/s44172-023-00103-1

10 COMMUNICATIONS ENGINEERING |            (2023) 2:53 | https://doi.org/10.1038/s44172-023-00103-1 | www.nature.com/commseng

www.nature.com/commseng


dataset and another 100 images as the testing dataset. All the
images were normalized, converted to binary images and up-
sampled from 28 × 28 to 32 × 32 to meet the dimension
requirement of the RD Hadamard patterns. The full RD
Hadamard basis for a 32 × 32 image has 1024 RD Hadamard
patterns each with a size of 32 × 32. Varying compression ratios
(varying levels of model ill-posedness) were used here as 8×, 16×,
32× and 64× corresponding to taking the first 1/8, 1/16, 1/32 and
1/64 of the RD Hadamard patterns, respectively. The 1D raw
measurement data were acquired by multiplying each individual
image with the RD Hadamard patterns at each compression ratio.
Therefore, the 1D raw measurement data have a size of 128 × 1,
64 × 1, 32 × 1 and 16 × 1 for the corresponding compression
ratios. Finally, white Gaussian noise was added to the 1D
measurement data to achieve an SNR of 25 dB. The SNR is
defined as:

SNR ¼ 20 log10
averaged signal amplitude
standard deviation of noise

ð22Þ

The STL-10 natural image database37 was used for training the
BCNN with 10,000 images as the training dataset, 2000 images as
the validating dataset and another 2000 images as the testing
dataset. All the images were down-sampled from 96 × 96 to
64 × 64 to meet the dimension requirement of the RD Hadamard
patterns. The full RD Hadamard basis for a 64 × 64 image has
4096 RD Hadamard patterns each with a size of 64 × 64. Varying
compression ratios (varying levels of model ill-posedness) were
used here as 2×, 4×, 8× and 16×. Therefore, the 1D raw
measurement data have a size of 2048 × 1, 1024 × 1, 512 × 1 and
256 × 1 for the corresponding compression ratios. Finally, white
Gaussian noise was added to the 1D measurement data to achieve
an SNR of 25 dB.

In DL, a pre-processing step is usually used to convert the
inputs of the neural network from measurement domain into
image domain and therefore makes the learning process
easier21,24,42,43. In this paper, the pre-processing step is a linear
operation on the acquired raw SPI data to reconstruct an initial
guess of each image in the training, validating and testing datasets
using the approximant inverse model matrix, and then used as
the input of BCNN for further training and prediction.

In order to efficiently compute the pseudoinverse of the large
forward model matrix, H, a computational approach was
employed. The equation, HHinv ¼ I was solved one column at
a time, where Hinv is the pseudoinverse of H and I is the identity
matrix. Thus, to calculate the ith column of Hinv, the LSQR
method in Matlab was applied using H and the ith column of I35.
In the case of the simulations, which relied on the Russian Doll
Hadamard matrix, the result was equivalent to the transpose of H.

For the BCNN trained with the MNIST database, the Adam
optimizer was used with a linearly decreasing learning rate
starting from 5 ´ 10�4 and ending with 5 ´ 10�6. The batch size
was chosen to be 40 and the BCNN was trained for 500 epochs to
guarantee a complete training. The overall training time was
approximately 7 minutes. For the BCNN trained with the STL-10
database, the Adam optimizer was used with a constant learning
rate of 5 ´ 10�4. The batch size was chosen to be 50 and the
BCNN was trained for 200 epochs to guarantee a complete
training. The overall training time was approximately 70 min.

Experimental data acquisition and pre-processing. Random
grayscale illumination patterns were used in the experimental SPI.
The images were taken from MNIST database36, normalized,
converted to binary images and resized from 28 × 28 to 32 × 32
pixels. 1024 random grayscale illumination patterns each with a
size of 32 × 32 were prepared as the full measurement basis. Then,

the first 64 or 16 illumination patterns in the full basis were used
to illuminate the objects, corresponding to a 16× or 64× com-
pression ratio, respectively. Therefore, the corresponding 1D raw
measurement data have a size of 64 × 1 or 16 × 1. The imaging
system is shown in Fig. 7. A spatial light modulator (Pluto-Vis,
Holoeye Photonics AG) is used to display each image and then
the image is illuminated by a set of random grayscale sampling
patterns which are displayed on a digital micromirror device26.
The 1D measurement data were collected by a bucket detector.
An sCMOS camera (Zyla 4.2 PLUS sCMOS, Andor Technology
Ltd) was used as the bucket detector by integrating all the pixels
of each acquired image to produce the single-pixel signal26. In the
pre-processing step, an initial guess of each image in the dataset is
reconstructed using the LSQR-approximated inverse model
matrix, and then used as the input of BCNN for further training
and prediction. The BCNN was trained on an experimentally
acquired dataset of 800 images and tested on 100 images with the
Bernoulli-distributed likelihood function. The batch size was
chosen to be 40 and the BCNN was trained for 500 epochs to
guarantee a complete training. The overall training time was
approximately 7 min.

Data availability
The data to implement the BCNN in simulated 16× SPI with MNIST dataset is available
at https://github.com/FMILab/Single-Pixel-Imaging-with-Uncertainty-Approximation.
Other generated and/or analyzed datasets that support the findings of this study are
available from the corresponding author upon reasonable request.

Code availability
The code to implement and analyze the BCNN is available at https://github.com/
FMILab/Single-Pixel-Imaging-with-Uncertainty-Approximation.
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