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Abstract: Deep learning (DL) is a powerful tool in computational imaging for many applications.
A common strategy is to use a preprocessor to reconstruct a preliminary image as the input to a
neural network to achieve an optimized image. Usually, the preprocessor incorporates knowledge
of the physics priors in the imaging model. One outstanding challenge, however, is errors that
arise from imperfections in the assumed model. Model mismatches degrade the quality of the
preliminary image and therefore affect the DL predictions. Another main challenge is that many
imaging inverse problems are ill-posed and the networks are over-parameterized; DL networks
have flexibility to extract features from the data that are not directly related to the imaging model.
This can lead to suboptimal training and poorer image reconstruction results. To solve these
challenges, a two-step training DL (TST-DL) framework is proposed for computational imaging
without physics priors. First, a single fully-connected layer (FCL) is trained to directly learn
the inverse model with the raw measurement data as the inputs and the images as the outputs.
Then, this pre-trained FCL is fixed and concatenated with an un-trained deep convolutional
network with a U-Net architecture for a second-step training to optimize the output image. This
approach has the advantage that does not rely on an accurate representation of the imaging
physics since the first-step training directly learns the inverse model. Furthermore, the TST-DL
approach mitigates network over-parameterization by separately training the FCL and U-Net. We
demonstrate this framework using a linear single-pixel camera imaging model. The results are
quantitatively compared with those from other frameworks. The TST-DL approach is shown to
perform comparable to approaches which incorporate perfect knowledge of the imaging model,
to be robust to noise and model ill-posedness, and to be more robust to model mismatch than
approaches which incorporate imperfect knowledge of the imaging model. Furthermore, TST-DL
yields better results than end-to-end training while suffering from less overfitting. Overall,
this TST-DL framework is a flexible approach for image reconstruction without physics priors,
applicable to diverse computational imaging systems.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Computational Imaging is a powerful tool in the application of image reconstruction. It relaxes
the hardware requirements of imaging systems by relying on (typically iterative) computational
techniques to recover the lost information, that is, solving an inverse imaging problem computa-
tionally [1,2]. These methods rely on a measured or assumed forward operator of the imaging
system to create a mapping from the image to the measurement. However, the inverse problem
is often ill-posed by design or due to the imperfect physical measurement, meaning multiple
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solutions exist for a given measurement. Therefore, additional information about the scene or the
object must be incorporated in the computational process for accurate reconstruction.

One of the most common methods in computational imaging is sparsity-based optimization
which seeks to reconstruct images from incomplete measurements or an ill-posed inverse
problem [3,4]. This concept is based on the knowledge that most natural images are sparse
(i.e., only a few nonzero values exist) when transformed into a specific domain. Researchers
have successfully applied sparsity-based optimization in a variety of imaging fields ranging
from compressed ultrafast photography [5] to holographic video [6] to biomedical imaging
[7]. Although sparsity-based optimization has advantages in image reconstruction, the primary
drawback to this approach is that it is iterative and time consuming. Depending on the scale
and scope of the problem, an image reconstruction task can require minutes to even hours of
computation. Therefore, it cannot achieve real-time imaging for many applications which require
pipelined data acquisition and image reconstruction. Furthermore, the optimal algorithm-specific
parameters in the sparsity-based optimization framework must be heuristically determined.

Deep learning (DL) [2,8] is an emerging computational imaging approach dramatically
improving the state-of-the-art in fast image reconstruction [9–15]. Instead of building a specific
model and finding the optimal algorithm-specific parameters heuristically (as in sparsity-based
optimization approaches), it relies on large amounts of data to automatically learn tasks by
finding the optimal parameters in each layer of a neural network [8]. It has the benefit of being
computationally efficient since most of the computational energy is used during the one-time
training process. Compared with sparsity-based optimization approaches which require iterative
testing of the regularizer for each image [16], DL approaches utilize the training dataset to find
the optimal regularizer for a broad range of images. Therefore, DL is a promising alternative to
augment or replace the iterative algorithms used in sparsity-based optimization. Researchers
have applied the DL approach in many imaging fields with varying network structures [2]. The
U-Net [17] architecture is one of the most successful DL frameworks in the imaging field. Its
architecture consists of a contracting path to capture context and a symmetric expanding path for
enhancement of key features. Skip connections between the contracting and expanding path help
to preserve features from the input image. A variety of applications in the imaging field, ranging
from segmentation to image reconstruction from incomplete data, have harnessed the original or
a modification of the U-Net structure [18–24].

In many cases, the acquired data can be directly fed into an end-to-end DL framework to
reconstruct an image [9,13]. A preprocessing step, however, can ease the burden on the network
by forming an initial estimate of the image with the knowledge of physics priors [2]. This
is particularly helpful when the data are noisy [14], when the acquired data have a different
size or dimensionality than the reconstructed image [25], or when the data are acquired in a
different domain than the image (e.g., the Fourier domain) [22,26,27]. The preprocessing step
typically takes the form of a computational image reconstruction algorithm which incorporates
an approximation of the imaging forward model [14,22,28,29]. This step can be computationally
intensive, especially when using iterative image reconstruction approaches [30,31]. Furthermore,
the forward model in many imaging fields can be difficult to acquire with high accuracy (i.e.,
a model mismatch exists) [7,32,33]. The model mismatch will lead to an inaccurate initial
image guess and therefore affects the DL prediction. Furthermore, deep learning networks are
over-parameterized, meaning they have the potential to adapt to a wide range of data types and
imaging problems. This also means, however, that the networks have the flexibility to extract
features from the data that are not directly related to the imaging model (there are insufficient
constraints to enforce learning of the physical model rather than extraction of image features)
[34]. This makes the networks susceptible to the model ill-posedness, leading to a degradation in
performance when they encounter new data.
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In this paper, a two-step training DL (TST-DL) framework is proposed for DL-based compu-
tational image reconstruction without prior knowledge of the model. The first (preprocessing)
step trains a single fully-connected layer (FCL) to approximate the imaging inverse model. The
weights of this trained FCL are then fixed and concatenated with an untrained convolutional
neural network (U-Net) for second-step training to effectively impose regularization constraints
and improve the reconstruction quality of the results predicted from the first-step training. The
TST-DL approach can be applied to diverse computational imaging problems which require
a preprocessing step because it places no constraints on the input size or dimensionality. We
demonstrate that the method is robust to noisy data and ill-posed problems while yielding compa-
rable results to methods incorporating ideal physics priors. The results show that by splitting
the training process into two steps, TST-DL is resistant to the effects of over-parameterization
observed in end-to-end DL approaches. Finally, the approach does not rely on prior knowledge
of the imaging model. Thus, errors arising from an incorrect or uncertain model are avoided.
Overall, these results also provide insight into how noise and model mismatch may affect the
decision of when and how to apply physics priors in computational imaging problems.

2. Methods

2.1. Regularized optimization

Any linear imaging model can be described by

g = Hf + n (1)

where f is the image to be reconstructed, g is the raw measurement, n is the noise and H is the
forward operator.

The most straightforward way to reconstruct the image f is to find the inverse of the forward
operator H−1 so that H−1H = I where I is the identity matrix. However, for most of the cases,
H−1 is not unique or requires excessive computational power to determine.

An effective alternative to directly computing the inverse of the forward model is to iteratively
solve the optimization problem,

f̂ = argminf | |Hf − g| |22 (2)

where | | · | |2 denotes the L2 norm. However, this pseudo-inverse solution is prone to artifacts and
noise due to the ill-posed property of the corresponding inverse problem. Therefore, additional
information is needed to converge to the correct solution.

A regularized optimization approach can incorporate additional knowledge about the image by
adding a regularization term,

f̂ = argminf {| |Hf − g| |22 + λϕ(f )} (3)

where ϕ is the regularization operator and λ is the regularization parameter. | |Hf − g| |22 is the
fidelity term and ϕ(f ) is the regularization term. The regularization term is to make a balance
with the fidelity term by driving the optimized f̂ to match a specific regularization rule. Common
regularization domains include spatial, edge, and wavelet domains. However, finding the optimal
regularization rule for a specific image dataset is still a challenging problem [16].

Inspired by the regularized optimization approach, we propose the TST-DL framework. The
first-step training is to train an FCL to learn an optimal linear H−1 given the training datasets
(g, f ). Then, this pre-trained FCL is fixed and concatenated with a U-Net for the second-step
training to learn an optimal regularization rule to regularize f towards the optimal solution. By
decoupling the whole inverse problem into two sub-problems with the two-step training strategy,
we enforce the first step (FCL) to learn the model and the second step to learn the optimal
regularizer (Section 3.2 for details).
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2.2. TST-DL architecture

Our TST-DL framework contains an FCL and a U-Net architecture as shown in Fig. 1.

Fig. 1. TST-DL structure. Step 1 is training the FCL and step 2 is training a U-Net
concatenated with the fixed pre-trained FCL. The input is the raw measurement data that can
be any size and dimension and the output is a two-dimensional (2D) image.

The DL framework in step 1 consists of an FCL mapping from the raw measurement data
(input) to the image (output) (Batch-normalization (BatchNorm), reshape and permute layers
are used for normalization and reshape purposes). With this FCL, the input measurement data
and the output image do not need to have the same size or even the same dimensionality. By
training the FCL, the optimal inverse operator will be learned given the training datasets. The DL
framework in step 2 follows the U-Net architecture [17] concatenated with the pre-trained FCL
from step 1. The U-Net, which utilizes an encoder-decoder structure with skip connections to
preserve wide-frequency features, was chosen because of its success in solving image-to-image
problems. Dropout layers are included in each stage of the U-Net. The mean squared error
(MSE) is used as the loss function in the first-step training to find the optimal H−1 that minimizes
| |f − H−1g| |22 . A customized loss function with a combination of the root mean squared error
(RMSE) and the difference of the structural similarity index (DSSIM) is used for the second-step
training. The Adam optimizer is used with the default learning rate of 0.001. The batch size is
chosen to be 50 and each training step runs 100 epochs.

2.3. Comparisons with other approaches

Quantitative comparisons are made with other DL frameworks (a deep convolutional auto-encoder
network (DCAN) [35], two-step DCAN, one-step training DL (OST-DL) and the physics-prior-
based DL (PPB-DL) approach with the U-Net architecture) and the established model-based
optimization approaches (an iterative L2 norm minimization approach LSQR [30] and a two-step
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iterative shrinkage/thresholding (TwIST) algorithm [31]). The comparisons with DCAN, two-step
DCAN, LSQR and TwIST are included in Supplement 1, Section 1. The DCAN is developed in
single-pixel imaging to reconstruct the dynamic scenes from the single-pixel camera capture of
the compressed signal. DCAN is comprised of two parts, the encoding part to find the optimal
binary filters for the measurement and the decoding part for image reconstruction with FCL
and three convolutional layers [35]. We only use the decoding part in DCAN since the binary
filters as the physics priors are unknown. The two-step DCAN splits the training of the FCL and
convolutional layers into two steps, similar to TST-DL. For the PPB-DL approach, an initial guess
of the image is reconstructed using the LSQR approach. Then, the initial guess of the image is
used as the input of U-Net for further training and prediction. For OST-DL, as an end-to-end DL
approach, the FCL is concatenated with U-Net for single-step training to learn the inverse model
and the optimal regularizer simultaneously instead of training each individually.

2.4. Imaging models and data acquisition

2.4.1. Model description and data simulation for single-pixel imaging

Single-pixel imaging [36, 37] with Russian-Doll (RD) Hadamard [38] patterns is used as an
example of a linear imaging model. In RD Hadamard patterns, the measurement order of the
Hadamard basis is reordered and optimized according to their significance for general scenes,
such that at discretized increments, the complete sampling for different spatial frequencies is
obtained [38]. The STL-10 natural image database [39] was used for training the TST-DL
framework with 10,000 images as the training dataset, 2,000 images as the validating dataset
and another 2,000 images as the testing dataset. In order to meet the dimension requirement of
the RD Hadamard patterns, all the images were down-sampled from 96×96 to 64×64. The full
RD Hadamard basis for a 64×64 image has 4,096 RD Hadamard patterns each with a size of
64×64. Different compression ratios (different levels of model ill-posedness) were used here as
2X, 4X and 16X corresponding to taking the first 1/2, 1/4 and 1/16 of RD Hadamard patterns,
respectively. For instance, in 4X compression, the first 1,024 RD Hadamard patterns were used.
The one-dimensional (1D) raw measurement data were acquired by multiplying each individual
image with the RD Hadamard patterns at each compression ratio. Therefore, the 1D raw
measurement data have a size of 2,048×1, 1,024×1 and 256×1 for the corresponding compression
ratios. Different levels of white Gaussian noise (-5 dB, 0 dB and 10 dB signal-to-noise ratio
(SNR) levels) were added to the 1D measurement data. For OST-DL as the one-step training
approach, the training runs 200 epochs. For PPB-DL, since the initial guess of the image is
obtained because of the known forward model, the training runs 100 epochs for a fair comparison.
For TST-DL, each training step runs for 100 epochs.

2.4.2. Model description and experimental data acquisition for single-pixel imaging

Single-pixel imaging with random grayscale illumination patterns were conducted in the
experiment. The images were taken from MNIST database [40] and resized from 28×28 to
32×32 pixels. 1,024 random grayscale illumination patterns each with a size of 32×32 were
prepared as the full measurement basis. Then, the first 64 or 4 illumination patterns in the full
basis were used to illuminate the objects, corresponding to a 16X or 256X compression ratio,
respectively. Therefore, the corresponding 1D raw measurement data have a size of 64×1 or 4×1.
The models were trained on an experimentally acquired dataset of 800 images and tested on 100
images. The batch size was chosen to be 40 since only 800 images were used for training. For
TST-DL, each step was trained with 500 epochs. For fair comparison, PPB-DL was trained with
500 epochs since the prior knowledge of the model was provided and OST-DL was trained with
1,000 epochs. The imaging system is shown in Fig. 3 in [33]. Each image was displayed on a
spatial light modulator (Pluto-Vis, Holoeye Photonics AG) and illuminated by a set of random
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grayscale patterns from a digital micromirror device. The 1D measurement data were recorded
by a bucket detector.

3. Simulation and analysis of TST-DL in single-pixel imaging

In this section, the single-pixel imaging [36,37] with RD Hadamard [38] patterns is used
as the case of the linear imaging model to analyze TST-DL. The model description and the
data acquisition are detailed in Section 2.4.1. The noise-free case (analyzed in Supplement 1,
Section 1) showed the superior performance of U-Net-based architecture (TST-DL, OST-DL
and PPB-DL). Thus, the remainder of the paper focuses on the U-Net architecture to more
deeply investigate the two-step training process. The comparison between TST-DL and the
DL approach with the physics priors (PPB-DL) in terms of model ill-posedness and noise, and
the capability and robustness of the FCL to learn the inverse model are analyzed in Section
3.1. The advantage of the two-step training in TST-DL over the one-step training approach
is analyzed in Section 3.2. Model mismatches are analyzed in Section 3.3 in detail to show
under what circumstances a neural-network-based preprocessor should be used rather than the
physics-prior-based preprocessor.

3.1. Robustness of TST-DL compared with the PPB-DL

Since the model ill-posedness and noise existing in measurement data are two major challenges
in imaging inverse problems, we sought to explore if TST-DL has similar robustness to model
ill-posedness and noise compared with a DL approach with physics priors (PPB-DL) in the
predictions of inverse models. The mean and standard deviation of the RMSE and structural
similarity index (SSIM) [41] for all the reconstructed images in the testing dataset from TST-DL
and PPB-DL at each noise level and each compression ratio were calculated to quantitatively
compare the performance. Figures 2(a) and 2(b) shows the quantitative results of the step 1
predictions of TST-DL (FCL of TST-DL) compared with the initial guess images of PPB-DL
(Inputs of PPB-DL) from the LSQR approach. The reason that the RMSE and SSIM of the inputs
of PPB-DL are worse than those of the FCL of TST-DL is that the FCL of TST-DL is trained on
noisy data and thus incorporates denoising into its model inversion. Figures 2(c) and 2(d) show
the final results of TST-DL and PPB-DL.

The results show that the performance of both TST-DL and PPB-DL suffer from the increase
of the compression ratio (model ill-posedness). This is observed as an increase of the RMSE
and a decrease of the SSIM of the reconstructed images. This is reasonable since the model
ill-posedness will affect both the initial guess images using the physics priors in PPB-DL and
the learned inverse model in step 1 of TST-DL. However, TST-DL is more robust to the model
ill-posedness since it starts to perform slightly better than PPB-DL at the 16X compression ratio
(high model ill-posedness) compared with a slightly worse performance than PPB-DL at 2X
and 4X compression ratios (low model ill-posedness). In TST-DL, there is more flexibility to
incorporate features from the images in the training process. This makes the image reconstruction
results more robust to highly ill-posed inverse models. However, in PPB-DL, the physics priors
used for the initial LSQR image reconstruction are not able to incorporate sufficient information
from the training dataset to offset the high compression of the image acquisition.

The results also show that both the performances of TST-DL and PPB-DL drop with the
increase of the noise level (decrease of the SNR). However, they both have a similar good level
of robustness to noise. For instance, at the 4X compression ratio, the results from TST-DL and
PPB-DL still remain at a reasonable level with the RMSE lower than 0.11 and SSIM larger
than 0.50 at the -5 dB SNR level (Figs. 2(e) and 2(f) show the 1D measurement data at the 4X
compression ratio without noise and with -5 dB SNR of noise, respectively). Figures 2(h)–2(w)
show a set of reconstructed images from TST-DL (FCL and final results) and PPB-DL (inputs and
final results) with the 4X compression ratio at -5 dB, 0 dB, 10 dB SNR levels and the noise-free

https://doi.org/10.6084/m9.figshare.14474097
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Fig. 2. TST-DL’s Robustness to model ill-posedness and noise compared with PPB-DL
at the 2X, 4X and 16X compression ratios with varying SNR levels of noise (-5 dB, 0 dB,
10 dB and the noise-free case). (a) RMSE and (b) SSIM of the intermediate reconstructed
images from the first-step training in TST-DL (FCL of TST-DL) and initial image guesses as
the inputs of PPB-DL (Inputs of PPB-DL). (c) RMSE and (d) SSIM of the final results in
both TST-DL and PPB-DL. (e) 1D measurement data without noise at the 4X compression
ratio. (f) 1D measurement data at the -5 dB SNR level at the 4X compression ratio. (g) The
ground-truth of an image in the testing dataset and the fine detail in the red square. (h)-(k)
FCL (of TST-DL) predictions of the image, the predictions of the fine detail in (g) and the
prediction errors of the fine detail. (l)-(o) The final TST-DL predictions of the image, the
predictions of the fine detail in (g) and the prediction errors of the fine detail. (p)-(s) The
initial image guesses (as the inputs of PPB-DL), the fine detail in (g) and the errors of the
fine detail. (t)-(w) The PPB-DL predictions of the image, the predictions of the fine detail in
(g) and the prediction errors of the fine detail. The error bars represent the standard deviation
of the RMSE or SSIM of the testing images with respect to the ground truth.
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case with the same ground-truth image in Fig. 2(g). Although the reconstructed images become
more and more blurred as the noise level increases, the general shape and even some of the details
(the mouth of the bird in the zoom-in figures) can still be well reconstructed at the -5 dB, 0 dB
and 10 dB SNR levels. Given the SNR levels at -5 dB and 0 dB are extremely high levels of noise
(for 0 dB, the noise level is the same as the signal level), we can conclude that TST-DL is robust
to noise.

The results in Fig. 2 show the inverse model learned in the FCL of TST-DL is robust to noise
and ill-posedness. As seen in Figs. 2(a) and (b), the initial image estimate provided by the FCL
outperforms the physics-based preprocessing in all but the most ideal case (2X compression
ratio, noise-free). As the SNR decreases and the model ill-posedness increases, the advantage of
the FCL becomes more evident. The FCL is capable to outperform LSQR (which incorporates
perfect knowledge of the imaging model) because it incorporates data priors in the training
process. In this particular case, the advantage disappears after the second step of training, but
it does indicate that a robust inverse is learned in the FCL at all noise levels and degrees of
ill-posedness tested here. Additional evidence that the FCL is capable and robust to estimate the
inverse model are shown in detail in Supplement 1, Section 2.

Overall, these results show that TST-DL is comparable to PPB-DL which incorporates perfect
knowledge of the physics priors. The physics priors are most beneficial when the compression
ratio is small. As the compression ratio increases, it becomes advantageous to apply TST-DL,
which can incorporate both the physical model and data priors into the first step of training.

3.2. Advantages of the two-step training strategy

As shown in Supplement 1, Section 1, the TST-DL approach outperforms OST-DL, in which an
identical network is trained in a single step. We hypothesized that the improved performance
comes from the added constraints applied by the two-step training strategy, which limits the
effects of over-parameterization. In the TST-DL case, we constrained the FCL to be a good
approximation of the inverse model by training it alone; no such constraint was placed on
OST-DL. In order to investigate this, we analyzed the intermediate image that is produced
between the FCL and the U-Net in Fig. 3. We applied both the two-step (TST-DL) and the
one-step (OST-DL) training strategies to the reconstruction of simulated single-pixel camera
images with the RD Hadamard matrix with varying compression ratios and SNR. In the TST-DL
case, the FCL generates a good approximation of the image, as shown in Figs. 3(i) and 3(o) with
the corresponding RMSE and SSIM quantified in Fig. 3(a) and (b). Then, the U-Net effectively
denoises and regularizes the estimate, as shown in Figs. 3(j) and 3(p) with the corresponding
RMSE and SSIM shown in Figs. 3(c) and 3(d). In the OST-DL case, the image after the FCL
bears little resemblance to the ground truth as shown in Figs. 3(f) and 3(l) with a much higher
RMSE and lower SSIM shown in Figs. 3(a) and 3(b). Thus, the FCL in OST-DL learns something
other than the inverse of the physical imaging model. The U-Net part in OST-DL does a good job
of completing the image reconstruction process as shown in Figs. 3(c) and 3(d) and in Figs. 3(g)
and 3(m), but it is not quite able to achieve the performance of the TST-DL approach. The
lack of additional constraints leads to a greater degree of overfitting that occurs in the OST-DL
case. This is evident in the deviation between the training and validation losses during training
(Figs. 3(h) and 3(n)). The overfitting becomes more pronounced at higher levels of noise.

Another possible contributing factor to the improved performance is the vanishing gradient
problem. During backpropagation, the weights in earlier layers of a network have a smaller
gradient than those in the later layers, leading to slow training or plateauing at suboptimal values.
Alternative approaches, such as adding an auxiliary loss function after the FCL could help
alleviate this problem [42] and a comparison with the TST-DL approach is made in details in
Supplement 1, Section 5 with three imaging cases. The results in Supplement 1, Section 5 show

https://doi.org/10.6084/m9.figshare.14474097
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Fig. 3. Comparison between TST-DL and OST-DL with the RD Hadamard matrix at the
2X, 4X and 16X compression ratios with varying SNR levels of noise (-5 dB, 0 dB, 10 dB
and the noise-free case). (a) RMSE and (b) SSIM of the intermediate results after the FCL in
both TST-DL and OST-DL. (c) RMSE and (d) SSIM of the final results in both TST-DL and
OST-DL. (e) The ground truth of a representative image. (f) The intermediate reconstructed
image after the FCL, and (g) the final reconstructed image in OST-DL at the 4X compression
ratio in the 10 dB SNR-of-noise case. (h) The RMSE and SSIM of the reconstructed images
from both the training and validating data during the training process in OST-DL at the 4X
compression ratio in the 10 dB SNR-of-noise case for overfitting analysis. (i)-(k) Are the
same as (f)-(h) except for the TST-DL approach. (l)-(q) Are the same as (f)-(k) except for
the 0-dB SNR case. The error bars represent the standard deviation of the RMSE or SSIM
of the testing images with respect to the ground truth.
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that, in general, TST-DL outperforms OST-DL with an auxiliary loss function (Multi-outputs
OST-DL).

Overall, these findings indicate that the network architecture of OST-DL is complex enough to
learn something other than the physical imaging model. In the absence of additional constraints,
it tends to do just that.

3.3. Robustness to model mismatch

A preprocessing step can be helpful to the DL prediction by forming an initial estimate of
the image as the input of the DL network [2]. Here, we sought to explore on under what
circumstances a neural-network-based preprocessor should be used rather than the physics-prior-
based preprocessor. We propose that the model mismatch (or uncertainty) and the noise are two
key factors in the decision. The model mismatch is defined as the difference between the idealized
model informed by the physics priors and the actual experimental model. We investigated the
effects of the model mismatch in two commonly employed DL training and testing strategies in the
image reconstruction of single-pixel imaging with the RD Hadamard patterns. The first strategy
is to acquire both training and testing data from experiments. In this case, the model mismatch
arises because, although the training data are generated with the actual experimental model, the
idealized model is used to inform the physics prior in the preprocessing step. The second strategy
is to acquire the training data from simulations and the testing data from experiments. In this
case, the model mismatch is more detrimental because the training data and preprocessor both
make use of the idealized model, which allows the errors to propagate all the way through the
training process. In both cases, the actual experimental model is used to generate the testing
data. The TST-DL was trained and tested using the first strategy since the model is unknown
and directly learned. For the PPB-DL approach both strategies were used (termed PPB-DL and
PPB-DL2, respectively).

Two specific types of the defined model mismatches were generated here. In the first case we
randomly inverted a subset of the elements in the RD Hadamard matrix with a 4X compression
ratio. For the second model mismatch we added different levels of uncertainty (as modeled by
additive Gaussian random variables) to the RD Hadamard matrix with a 4X compression ratio.
In both types of model mismatches, the modified matrix is equivalent to the actual experimental
model and the original unmodified matrix is equivalent to the idealized model mentioned in the
previous paragraph. For image reconstruction using PPB-DL and PPB-DL2, we still used the
original unmodified matrix for an initial guess of the image as the input of PPB-DL and PPB-DL2.
In order to explore the effects of noise while the model mismatch exists, noise levels of 15 dB
and 0 dB SNR were used for both the training and testing measurement data. 15 dB SNR of noise
is a reasonable noise level in an actual imaging system while 0 dB SNR of noise (the noise level
equals to the mean signal level) was used as an extreme example. In PPB-DL2, the noise-free
training measurement data were used for training and the noisy testing data were used for testing.

Figure 4 shows the results in TST-DL, PPB-DL, and PPB-DL2 with each type of the model
mismatch. The results show that as the model mismatch increases, the performance of TST-DL,
PPB-DL and PPB-DL2 all decrease. In the case of TST-DL, this decrease in performance stems
from the fact that the actual forward model deviates from the more-ideal RD Hadamard matrix.
However, the degree of decrease is different among TST-DL, PPB-DL and PPB-DL2. While
the PPB-DL and PPB-DL2 approaches slightly outperform TST-DL when no model mismatch
exists, their advantage begins to wane as the model mismatch grows. When a high degree of
model mismatch occurs, then the TST-DL approach clearly outperforms the approaches which
incorporate incorrect physics priors. Interestingly, this advantage becomes less pronounced as
the noise level increases. Overall, the PPB-DL2 preforms much worse than PPB-DL and TST-DL
because the training does not correct for the model mismatch introduced by the preprocessor.
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Fig. 4. Robustness of TST-DL, PPB-DL and PPB-DL2 to the model mismatch in the
varying SNR cases. (a) RMSE and SSIM of the predicted results with varying percentages
of the inverted matrix elements in the noise-free case. (b) RMSE and SSIM of the predicted
results with Gaussian random variables with varying standard deviation added to the model
in the noise-free case. (c) RMSE and SSIM of the predicted results with varying percentages
of the inverted matrix elements in the 15 dB SNR of noise case. (d) RMSE and SSIM
of the predicted results with Gaussian random variables with varying standard deviation
added to the model in the 15 dB SNR of noise case. (e) RMSE and SSIM of the predicted
results with varying percentages of the inverted matrix elements in the 0 dB SNR of noise
case. (f) RMSE and SSIM of the predicted results with Gaussian random variables with
varying standard deviation added to the model in the 0 dB SNR of noise case. The error bars
represent the standard deviation of the RMSE or SSIM of the testing images with respect to
the ground truth.
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Taken as a whole, these results yield insight into when and how physics priors should be
incorporated into a DL strategy. The TST-DL approach performed better when there is uncertainty
in the model and there is a little-to-moderate amount of noise. As the noise approaches extreme
levels (SNR= 0 dB), then it becomes beneficial to incorporate a preprocessor with relatively
accurate physics priors. It is important to note that both cases (TST-DL and PPB-DL) rely on
training with data produced without the model mismatch (i.e., the model mismatch is only present
in the preprocessor step of PPB-DL). If the model is trained on data produced with the model
mismatch (i.e., PPB-DL2), then even small levels of model uncertainty can lead to large errors.
The TST-DL and PPB-DL approaches come with a drawback, however, that the training process
must be performed with experimentally acquired images.

4. Experimental single-pixel imaging results

Experimentally recorded data in single-pixel imaging with random grayscale illumination patterns
were used to verify the effectiveness of TST-DL (see Section 2.4.2 for model description and
data acquisition). Figure 5 shows representative ground-truth images from the testing dataset as
well as the corresponding reconstructed images from TwIST, PPB-DL, OST-DL and TST-DL at
the 16X compression ratio. Qualitatively, both the PPB-DL and TST-DL approaches achieve
better results than TwIST and OST-DL where the results from TwIST are prone to blurry and the
results from OST-DL are prone to reconstrucing the wrong number. Quantitative comparison
was made by calculating the mean and the standard deviation of RMSE and SSIM between
the final reconstructed images and the ground-truth images in the testing dataset as shown
in Fig. 5(k). The T-Test on the sets of RMSE and SSIM of TwIST, PPB-DL, OST-DL and
TST-DL at the 16X compression ratio is shown in Supplement 1, Table S1. The quantitative
comparison and T-Test show that TST-DL performs better than TwIST, OST-DL and PPB-DL
at the 16X compression ratio, with a lower RMSE and higher SSIM. There are two possible
reasons that TST-DL outperforms TwIST and PPB-DL. First, TST-DL is more robust to model
ill-posedness than TwIST and PPB-DL since it has more flexibility to incorporate features from
the training images. The initial LSQR image reconstruction in PPB-DL has poor image quality
and insufficient information is available from the training dataset to offset the high compression
of the image acquisition (as detailed in Section 3.1). Second, the mismatch between the idealized
model (physics priors used in TwIST and PPB-DL) and the actual experimental model degrades
the performances of TwIST and PPB-DL (as detailed in Section 3.3). A possible reason that
TST-DL outperforms OST-DL is that the added constraints applied by TST-DL limit the effects of
over-parameterization while OST-DL runs into the over-parameterization issue since no constraint
is applied (as detailed in Section 3.2). The details and results for the 256X compression-ratio
case are shown in Supplement 1, Section 4. The RMSE, SSIM and the T-Test results are included.
According to the results, PPB-DL shows better contrast, but is also prone to reconstructing
the wrong number. OST-DL is prone to both blurry and reconstructing the wrong number. In
contrast, TST-DL produces blurred results for the less-successful cases. Indeed, it is hard to pick
the better DL approach among PPB-DL, OST-DL and TST-DL in the 256X compression-ratio
case. It is important to note that the 256x compression ratio is extremely high; each 32×32 image
was reconstructed from only four measurements. This makes it an incredibly difficult problem to
solve, even for the sparse images in the MNIST database shown here. Therefore, the advantage
of TST-DL over OST-DL by adding the constraint may vanish given such an extremely high
compression ratio of 256X. However, it still shows the good performance of TST-DL since the
results of TST-DL are comparable to those of PPB-DL which incorporates the physics priors at
the 256X compression ratio.

https://doi.org/10.6084/m9.figshare.14474097
https://doi.org/10.6084/m9.figshare.14474097
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Fig. 5. Experimental results on single-pixel imaging with the 16X compression ratio.
(a)-(j) Ground-truth images. (a0)-(j0) Reconstructed images in TwIST. (a1)-(j1) Initial image
guesses as the inputs of PPB-DL. (a2)-(j2) Final reconstructed images in PPB-DL. (a3)-(j3)
Intermediate images after the FCL in OST-DL. (a4)-(j4) Final reconstructed images in OST-
DL. (a5)-(j5) Intermediate images after the FCL in TST-DL. (a6)-(j6) Final reconstructed
images in TST-DL. (k) RMSE and SSIM between the final reconstructed images and the
ground-truth images in the testing dataset for TST-DL, OST-DL, PPB-DL and TwIST. The
error bars represent the standard deviation of the RMSE or SSIM of the testing images with
respect to the ground truth.
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5. Discussions and conclusions

A TST-DL framework is proposed for computational imaging without prior knowledge of the
imaging model. The FCL in the first-step training acts as a preprocessor by directly learning
the inverse of the forward operator given the training data. Then, the pre-trained FCL is fixed
and concatenated with a U-Net for a second-step training as a regularization step. Simulations
and experiments with different imaging models were conducted to verify the effectiveness of
the proposed TST-DL with quantitative comparison with other DL frameworks and the iterative
model-based optimization approaches. The results show the TST-DL outperforms the other
DL frameworks without physics priors and is comparable to (and sometimes better than) the
DL framework that incorporate the physics priors. The training time depends on the imaging
model, the batch size and the number of training samples. For our simulated single-pixel imaging
results with the 4X compression-ratio RD Hadamard patterns where the batch size is 50 with
10,000 training samples, each epoch in the first step of TST-DL took approximately 8 seconds
and each epoch in the second step of TST-DL took approximately 17 seconds running on a
NVIDIA Quadro M4000 GPU with an 8GB of memory. The average time to predict an image
from the testing dataset in TST-DL is ≤ 1 ms in Tensorflow. A detailed comparison among the
DL approaches in terms of the number of trainable parameters, the epoch number, flop counts
and prediction time (ms per image) is shown in Supplement 1, Table S2.

The TST-DL framework is applicable to imaging problems for which a preprocessor is
necessary. In applications where the acquired data and reconstructed images are more closely
related, a standard U-Net (or other similar architecture) may be a more appropriate choice for
end-to-end processing. Although this work focused primarily on a single-pixel imaging system,
there are no model-specific restrictions to the approach. Thus, it could be readily adapted for a
wide variety of imaging systems. It has the benefit of circumventing the model errors that arise
from model-based preprocessors or simulated data. This comes with the drawback, however,
that the training process must be performed with experimentally acquired images. This could
be challenging since a relatively large dataset may be required to train the large number of
parameters in the FCL as the size of the image increases, though the results are relatively robust
as the dataset size is decreased (Supplement 1, Fig. S9).

The capability of TST-DL to handle nonlinear imaging models is analyzed in Supplement 1,
Section 3 with the image de-autocorrelation problem as a test case. Further exploration is still
needed in determining the optimal number of FCLs to use, the choice of the nonlinear activation
functions in each FCL and the comparison with the existing DL approaches to solve such inverse
problems [43–46]. This optimization will likely depend on the degree of nonlinearity of the
model.

In summary, the TST-DL approach enables reliable image reconstruction without relying on
possibly flawed assumptions about the imaging model. The two-step training strategy constrains
the training process so that the inverse model can be effectively learned. Overall, this provides a
flexible, standardized framework that can be applied to diverse imaging problems.
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